2026届山西省吕梁市汾阳中学高一数学第一学期期末达标检测模拟试题含解析_第1页
2026届山西省吕梁市汾阳中学高一数学第一学期期末达标检测模拟试题含解析_第2页
2026届山西省吕梁市汾阳中学高一数学第一学期期末达标检测模拟试题含解析_第3页
2026届山西省吕梁市汾阳中学高一数学第一学期期末达标检测模拟试题含解析_第4页
2026届山西省吕梁市汾阳中学高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山西省吕梁市汾阳中学高一数学第一学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一种药在病人血液中量低于时病人就有危险,现给某病人的静脉注射了这种药,如果药在血液中以每小时80%的比例衰减,那么应再向病人的血液中补充这种药不能超过的最长时间为()A.1.5小时 B.2小时C.2.5小时 D.3小时2.已知扇形的半径为,面积为,则这个扇形的圆心角的弧度数为()A. B.C. D.3.设,且,则()A. B.C. D.4.实数满足,则下列关系正确的是A. B.C. D.5.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A. B.C. D.6.用二分法求方程的近似解时,可以取的一个区间是()A. B.C. D.7.命题“对,都有”的否定为()A.对,都有 B.对,都有C.,使得 D.,使得8.若是第三象限角,且,则是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角9.关于的不等式对任意恒成立,则实数的取值范围是()A. B.C. D.10.已知,若函数在上为减函数,且函数在上有最大值,则a的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.是第___________象限角.12.某地街道呈现东—西、南—北向的网格状,相邻街距都为1,两街道相交的点称为格点.若以互相垂直的两条街道为坐标轴建立平面直角坐标系,根据垃圾分类要求,下述格点为垃圾回收点:,,,,,.请确定一个格点(除回收点外)___________为垃圾集中回收站,使这6个回收点沿街道到回收站之间路程的和最短.13.函数的定义域为_________________________14.直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为____________15.函数的定义域为_____________________16.已知定义在上的函数满足:①;②在区间上单调递减;③的图象关于直线对称,则的解析式可以是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数​​(1)试判断函数的奇偶性;(2)求函数的值域.18.某高校的入学面试中有3道难度相当的题目,李明答对每道题的概率都是0.6,若每位面试者都有三次机会,一旦答对抽到的题目,则面试通过,否则就一直抽题到第三次为止.用Y表示答对题目,用N表示没有答对的题目,假设对抽到的不同题目能否答对是独立的,那么:(1)在图的树状图中填写样本点,并写出样本空间;(2)求李明最终通过面试的概率.19.已知函数的图象关于直线对称,若实数满足时,的最小值为1(1)求的解析式;(2)将函数的图象向左平移个单位后,得到的图象,求的单调递减区间20.已知函数f(x)=coscos-sinxcosx+(1)求函数f(x)的最小正周期和最大值;(2)求函数f(x)单调递增区间21.已知函数()在同一半周期内的图象过点,,,其中为坐标原点,为函数图象的最高点,为函数的图象与轴正半轴的交点,为等腰直角三角形.(1)求的值;(2)将绕点按逆时针方向旋转角(),得到,若点和点都恰好落在曲线()上,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设时间为,依题意有,解指数不等式即可;【详解】解:设时间为,有,即,解得.故选:D2、A【解析】由扇形的面积公式即可求解.【详解】解:设扇形圆心角的弧度数为,则扇形面积为,解得,因为,所以扇形的圆心角的弧度数为4.故选:A3、C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.4、A【解析】根据指数和对数的运算公式得到【详解】=故A正确.故B不正确;故C,D不正确.故答案为A.【点睛】这个题目考查了指数和对数的公式的互化,以及换底公式的应用,较为简单.5、C【解析】如图所示,补成直四棱柱,则所求角为,易得,因此,故选C平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围6、B【解析】构造函数并判断其单调性,借助零点存在性定理即可得解.【详解】,令,在上单调递增,并且图象连续,,,在区间内有零点,所以可以取的一个区间是.故选:B7、D【解析】全称命题的否定是特称命题,把任意改为存在,把结论否定.【详解】,都有的否定是,使得.故选:D8、D【解析】根据是第三象限角,写出角的集合,进一步得到的集合,再根据得到答案【详解】是第三象限角,,则,即是第二象限或者第四象限角,,是第四象限角故选:D9、B【解析】当时可知;当时,采用分离变量法可得,结合基本不等式可求得;综合两种情况可得结果.【详解】当时,不等式为恒成立,;当时,不等式可化为:,,(当且仅当,即时取等号),;综上所述:实数的取值范围为.故选:B.10、A【解析】由复合函数在上的单调性可构造不等式求得,结合已知可知;当时,,若,可知无最大值;若,可得到,解不等式,与的范围结合可求得结果.【详解】在上为减函数,解得:当时,,此时当,时,在上单调递增无最大值,不合题意当,时,在上单调递减若在上有最大值,解得:,又故选【点睛】本题考查根据复合函数单调性求解参数范围、根据分段函数有最值求解参数范围的问题;关键是能够通过分类讨论的方式得到处于不同范围时在区间内的单调性,进而根据函数有最值构造不等式;易错点是忽略对数真数大于零的要求,造成范围求解错误.二、填空题:本大题共6小题,每小题5分,共30分。11、三【解析】根据给定的范围确定其象限即可.【详解】由,故在第三象限.故答案为:三.12、【解析】根据题意,设满足题意得格点为,这6个回收点沿街道到回收站之间路程的和为,故,再分别求和的最小值时的即可得答案.【详解】解:设满足题意得格点为,这6个回收点沿街道到回收站之间路程和为,则,令,由于其去掉绝对值为一次函数,故其最小值在区间端点值,所以代入得,所以当时,取得最小值,同理,令,代入得所以当或时,取得最小值,所以当,或时,这6个回收点沿街道到回收站之间路程的和最小,由于是一个回收点,故舍去,所以当,这6个回收点沿街道到回收站之间路程的和最小,故格点为故答案为:13、(-1,2).【解析】分析:由对数式真数大于0,分母中根式内部的代数式大于0联立不等式组求解x的取值集合得答案详解:由,解得﹣1<x<2∴函数f(x)=+ln(x+1)的定义域为(﹣1,2)故答案为(﹣1,2)点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)14、x+3y-5=0或x=-1【解析】当直线l为x=﹣1时,满足条件,因此直线l方程可以为x=﹣1当直线l的斜率存在时,设直线l的方程为:y﹣2=k(x+1),化为:kx﹣y+k+2=0,则,化为:3k﹣1=±(3k+3),解得k=﹣∴直线l的方程为:y﹣2=﹣(x+1),化为:x+3y﹣5=0综上可得:直线l的方程为:x+3y﹣5=0或x=﹣1故答案为x+3y﹣5=0或x=﹣115、【解析】,区间为.考点:函数的定义域16、(答案不唯一)【解析】取,结合二次函数的基本性质逐项验证可得结论.【详解】取,则,满足①,在区间上单调递减,满足②,的图象关于直线对称,满足③.故答案为:(答案不唯一).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数;(2).【解析】化简函数f(x)=log3(2-sinx)-log3(2+sinx)(1)利用函数的奇偶性的定义直接求解即可;(2)把分子分离常数,根据-1≤sinx≤1,求出函数的值域【详解】(1),的定义域为,则对中的任意都有,所以为上的奇函数;(2)令,,,

,,,

即值域为.【点睛】本题考查对数的运算性质,函数奇偶性的判断,对数函数的值域与最值,考查计算能力,属于中档题.18、(1)(2)【解析】(1)根据树状图表示出样本空间;(2)先计算李明未通过面试的概率,再由对立事件的计算公式求出通过面试的概率.【小问1详解】由题意,样本空间为.样本点的填写如图所示,【小问2详解】可知李明未通过面试的概率为,所以李明通过面试的概率为19、(1);(2),【解析】(1)利用已知条件和,可以求出函数的周期,利用是对称轴和,可以求解出的值,从而完成解析式的求解;(2)先写出函数经过平移以后得到的函数解析式,然后再求解的递减区间即可完成求解.【小问1详解】由时,,知,∴,∵的图象关于直线对称,∴,,∵,∴,∴【小问2详解】由题意知:由,,∴,,∴的单调递减区间是,20、(1)最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论