山东省山东师大附中2026届数学高一上期末调研模拟试题含解析_第1页
山东省山东师大附中2026届数学高一上期末调研模拟试题含解析_第2页
山东省山东师大附中2026届数学高一上期末调研模拟试题含解析_第3页
山东省山东师大附中2026届数学高一上期末调研模拟试题含解析_第4页
山东省山东师大附中2026届数学高一上期末调研模拟试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省山东师大附中2026届数学高一上期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则()A.-3 B.-1C.1 D.32.给定四个函数:①;②();③;④.其中是奇函数的有()A.1个 B.2个C.3个 D.4个3.已知扇形的面积为,当扇形的周长最小时,扇形的圆心角为()A1 B.2C.4 D.84.定义在上的函数,,若在区间上为增函数,则一定为正数的是A. B.C. D.5.若函数在R上单调递减,则实数a的取值范围是()A. B.C. D.6.已知,,,则A. B.C. D.7.已知幂函数y=f(x)经过点(3,),则f(x)()A.是偶函数,且在(0,+∞)上是增函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是减函数D.是非奇非偶函数,且在(0,+∞)上是增函数8.已知,则()A. B.C. D.9.设向量=(1.)与=(-1,2)垂直,则等于A. B.C.0 D.-110.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2C.若a>b,ab<0,则1a>1b D.若a二、填空题:本大题共6小题,每小题5分,共30分。11.若“”为假命题,则实数m最小值为___________.12.=___________13.已知函数为奇函数,则______14.已知,则________.15.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积为___________.16.函数的定义域为_________________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的解析式,并证明为R上的增函数;(2)当时,且的图象关于点对称.若,对,使得成立,求实数的取值范围18.已知直线l经过点A(2,1),且与直线l1:2x﹣y+4=0垂直(1)求直线l的方程;(2)若点P(2,m)到直线l的距离为2,求m的值19.(1)已知,求的最小值;(2)求函数的定义域20.已知函数f(x)=lg(3+x)+lg(3-x)(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由21.已知,求下列各式的值.(1);(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用同角三角函数基本关系式中的技巧弦化切求解.【详解】.故选:D【点睛】本题考查了同角三角函数基本关系中的弦化切技巧,属于容易题.2、B【解析】首先求出函数的定义域,再由函数的奇偶性定义即可求解.【详解】①函数的定义域为,且,,则函数是奇函数;②函数的定义域关于原点不对称,则函数()为非奇非偶函数;③函数的定义域为,,则函数不是奇函数;④函数的定义域为,,则函数是奇函数.故选:B3、B【解析】先表示出扇形的面积得到圆心角与半径的关系,再利用基本不等式求出周长的最小值,进而求出圆心角的度数.【详解】设扇形的圆心角为,半径为,则由题意可得∴,当且仅当时,即时取等号,∴当扇形的圆心角为2时,扇形的周长取得最小值32.故选:B.4、A【解析】在区间上为增函数,即故选点睛:本题运用函数的单调性即计算出结果的符号问题,看似本题有点复杂,在解析式的给出时含有复合部分,只要运用函数的解析式求值,然后利用函数的单调性,做出减法运算即可判定出结果5、D【解析】要保证函数在R上单调递减,需使得和都为减函数,且x=1处函数值满足,由此解得答案.【详解】由函数在R上单调递减,可得,解得,故选:D.6、A【解析】故选7、D【解析】利用幂函数的定义求得指数的值,得到幂函数的解析式,进而结合幂函数的图象判定单调性和奇偶性【详解】设幂函数的解析式为,将点的坐标代入解析式得,解得,∴,函数的定义域为,是非奇非偶函数,且在上是增函数,故选:D.8、A【解析】利用诱导公式及正弦函数的单调性可判断的大小,利用正切函数的单调性可判断的范围,从而可得正确的选项.【详解】,,因为,故,而,因为,故,故,综上,,故选:A9、C【解析】:正确的是C.点评:此题主要考察平面向量的数量积的概念、运算和性质,同时考察三角函数的求值运算.10、C【解析】根据不等式的性质或通过举反例,对四个选项进行分析【详解】A.若a>b,当c=0时,ac2=bB.若ac>bc,当c<0时,则C.因为ab<0,将a>b两边同除以ab,则1a>1D.若a2>b2且ab>0,当a<0b<0时,则a<b故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】写出该命题的否定命题,根据否定命题求出的取值范围即可【详解】解:命题“,有”是假命题,它否定命题是“,有”,是真命题,即,恒成立,所以,因为,在上单调递减,上单调递增,又,,所以所以,的最小值为,故答案为:12、【解析】tan240°=tan(180°+60°)=tan60°=,故答案为:13、##【解析】利用奇函数的性质进行求解即可.【详解】因为是奇函数,所以有,故答案:14、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.15、【解析】计算出等边的边长,计算出由弧与所围成的弓形的面积,进而可求得勒洛三角形的面积.【详解】设等边三角形的边长为,则,解得,所以,由弧与所围成的弓形的面积为,所以该勒洛三角形的面积.故答案为:.16、(-1,2).【解析】分析:由对数式真数大于0,分母中根式内部的代数式大于0联立不等式组求解x的取值集合得答案详解:由,解得﹣1<x<2∴函数f(x)=+ln(x+1)的定义域为(﹣1,2)故答案为(﹣1,2)点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0定义域是{x|x≠0}(5)y=ax(a>0且a≠1),y=sinx,y=cosx的定义域均为R.(6)y=logax(a>0且a≠1)的定义域为(0,+∞)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);证明见解析.(2)【解析】(1)由求出后可得的解析式,按照增函数的定义证明即可;(2)求出函数在上的值域为,求出在上的最值,根据的最值都属于列式可求出结果.【小问1详解】依题意可得,解得,所以.证明:任取,且,则,因为,,所以,所以为R上的增函数.【小问2详解】依题意,即,当时,为增函数,,,所以在上的值域为,因为在上的最值只可能在或或处取得,所以在上的最值只可能在或或处取得,所以在上的最值只可能是或或,因为的图像关于点对称,所以在上的最值只可能是或或,所以在上的最值只可能是或或或或,若,对,使得成立,则的最值都属于,所以,即,所以,所以,又,所以.【点睛】关键点点睛:(2)中,求出在上的最值,根据题意转化为的最值都属于是解题关键.18、(1)x+2y﹣4=0;(2)m的值为6或﹣4【解析】(1)首先根据设出直线,再带入即可.(2)列出点到直线的距离公式即可求出的值.【详解】(1)根据题意,直线与直线垂直,设直线的方程为,又由直线经过点,则有,解可得.故直线的方程为.(2)根据题意,由(1)的结论:直线的方程为,若点到直线的距离为,则有,变形可得:,解可得:或.故的值为或.【点睛】本题第一问考查两条直线垂直的位置关系,第二问考查点到直线的距离公式,属于简单题.19、(1)3;(2)或【解析】(1)由,利用基本不等式即可求解.(2)由题意可得,解一元二次不等式即可求解.【详解】解:(1),,,当且仅当,即时取等号,的最小值为3;(2)由题知,令,解得或∴函数定义域为或20、(1);(2)偶函数,理由详见解析【解析】(1)求定义域,通常就是求使函数式有意义的自变量取值集合,所以只要满足各项都有意义即可,对数型的函数求值域,关键

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论