甘肃省河西五市部分普通高中2026届数学高二上期末检测试题含解析_第1页
甘肃省河西五市部分普通高中2026届数学高二上期末检测试题含解析_第2页
甘肃省河西五市部分普通高中2026届数学高二上期末检测试题含解析_第3页
甘肃省河西五市部分普通高中2026届数学高二上期末检测试题含解析_第4页
甘肃省河西五市部分普通高中2026届数学高二上期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省河西五市部分普通高中2026届数学高二上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)2.在四面体中,,,,且,,则等于()A. B.C. D.3.在中,B=30°,BC=2,AB=,则边AC的长等于()A. B.1C. D.24.已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为A.-=1 B.-=1C.-=1 D.-=15.命题“∃x0∈(0,+∞),”的否定是()A.∀x∈(﹣∞,0),2x+sinx≥0B.∀x∈(0,+∞),2x+sinx≥0C.∃x0∈(0,+∞),D.∃x0∈(﹣∞,0),6.下列函数的求导正确的是()A. B.C. D.7.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A. B.C. D.8.已知函数的导函数的图像如图所示,则下列说法正确的是()A.是函数的极大值点B.函数在区间上单调递增C.是函数的最小值点D.曲线在处切线的斜率小于零9.抛物线的准线方程是,则实数的值为()A. B.C.8 D.10.若抛物线x2=8y上一点P到焦点的距离为9,则点P的纵坐标为()A. B.C.6 D.711.已知抛物线的焦点为,点为抛物线上一点,点,则的最小值为()A. B.2C. D.312.已知是双曲线的左焦点,圆与双曲线在第一象限的交点为,若的中点在双曲线的渐近线上,则此双曲线的离心率是()A. B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.下图是4个几何体的展开图,图①是由4个边长为3的正三角形组成;图②是由四个边长为3的正三角形和一个边长为3的正方形组成;图③是由8个边长为3的正三角形组成;图④是由6个边长为3的正方形组成若直径为4的球形容器(不计容器厚度)内有一几何体,则该几何体的展开图可以是______(填所有正确结论的番号)14.抛物线()上的一点到其焦点F的距离______.15.已知函数是定义域上的单调递增函数,是的导数且为定义域上的单调递减函数,请写出一个满足条件的函数的解析式___________16.关于曲线,给出下列三个结论:①曲线关于原点对称,但不关于轴、轴对称;②曲线恰好经过4个整点(即横、纵坐标均为整数的点);③曲线上任意一点到原点的距离都不大于.其中,正确结论的序号是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①成等差数列;②成等比数列;③这三个条件中任选一个,补充在下面的问题中,并对其求解.问题:已知为数列的前项和,,且___________.(1)求数列的通项公式;(2)记,求数列的前项和.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)新冠肺炎疫情期间,某地为了解本地居民对当地防疫工作的满意度,从本地居民中随机抽取了1500名居民进行评分(满分100分),根据调查数据制成如下表格和频率分布直方图.满意度评分满意度等级不满意基本满意满意非常满意(1)求a的值;(2)定义满意度指数,若,则防疫工作需要进行调整,否则不需要调整,根据所学知识判断该区防疫工作是否需要进行调整?19.(12分)已知抛物线的方程为,点,过点的直线交抛物线于,两点(1)是否为定值?若是,求出该定值;若不是,说明理由;(2)若点是直线上的动点,且,求面积的最小值20.(12分)已知函数(1)若,求曲线在处的切线方程(2)讨论函数的单调性21.(12分)为增强市民的环境保护意识,某市面向全市征召若干名宣传志愿者,成立环境保护宣传小组,现把该小组的成员按年龄分成、、、、这组,得到的频率分布直方图如图所示,已知年龄在内的人数为.(1)若用分层抽样的方法从年龄在、、内的志愿者中抽取名参加某社区的宣传活动,再从这名志愿者中随机抽取名志愿者做环境保护知识宣讲,求这名环境保护知识宣讲志愿者中至少有名年龄在内的概率;(2)在(1)的条件下,记抽取的名志愿者分别为甲、乙,该社区为了感谢甲、乙作为环境保护知识宣讲的志愿者,给甲、乙各随机派发价值元、元、元的纪念品一件,求甲的纪念品不比乙的纪念品价值高的概率.22.(10分)已知点和圆.(1)求圆的圆心坐标和半径;(2)设为圆上的点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的方程求得的值,进而求得椭圆的焦点坐标,得到答案.【详解】由椭圆,可得,则,所以椭圆的焦点坐标为和.故选:A.2、B【解析】根据空间向量的线性运算即可求解.【详解】解:由题知,故选:B.3、B【解析】利用余弦定理即得【详解】由余弦定理,得,解得AC=1故选:B.4、A【解析】由题意得,双曲线的焦距为,即,又双曲线的渐近线方程为,点在的渐近线上,所以,联立方程组可得,所以双曲线的方程为考点:双曲线的标准方程及简单的几何性质5、B【解析】利用特称命题的否定是全称命题,写出结果即可【详解】命题“∃x0∈(0,+∞),”的否定是“∀x∈(0,+∞),2x+sinx≥0”故选:B6、B【解析】对各个选项进行导数运算验证即可.【详解】,故A错误;,故B正确;,故C错误;,故D错误.故选:B7、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得8、B【解析】根据导函数的图象,得到函数的单调区间与极值点,即可判断;【详解】解:由导函数的图象可知,当时,当时,当时,当或时,则在上单调递增,在上单调递减,所以函数在处取得极小值即最小值,所以是函数的极小值点与最小值点,因为,所以曲线在处切线的斜率大于零,故选:B9、B【解析】化简方程为,求得抛物线的准线方程,列出方程,即可求解.【详解】由抛物线,可得,所以,所以抛物线的准线方程为,因为抛物线的准线方程为,所以,解得.故选:B.10、D【解析】设出P的纵坐标,利用抛物线的定义列出方程,求出答案.【详解】由题意得:抛物线准线方程为,P点到抛物线的焦点的距离等于到准线的距离,设点纵坐标为,则,解得:.故选:D11、D【解析】求出抛物线C的准线l的方程,过A作l的垂线段,结合几何意义及抛物线定义即可得解.【详解】抛物线的准线l:,显然点A在抛物线C内,过A作AM⊥l于M,交抛物线C于P,如图,在抛物线C上任取不同于点P的点,过作于点N,连PF,AN,,由抛物线定义知,,于是得,即点P是过A作准线l的垂线与抛物线C的交点时,取最小值,所以的最小值为3.故选:D12、A【解析】根据双曲线的几何性质和平面几何性质,建立关于a,b,c的方程,从而可求得双曲线的离心率得选项.【详解】由题意可设右焦点为,因为,且圆:,所以点在以焦距为直径的圆上,则,设的中点为点,则为的中位线,所以,则,又点在渐近线上,所以,且,则,,所以,所以,则在中,可得,,即,解得,所以,故选:A【点睛】方法点睛:(1)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量的方程或不等式,利用和转化为关于e的方程或不等式,通过解方程或不等式求得离心率的值或取值范围(2)对于焦点三角形,要注意双曲线定义的应用,运用整体代换的方法可以减少计算量二、填空题:本题共4小题,每小题5分,共20分。13、①【解析】根据几何体展开图可知①正四面体、②正四棱锥、③正八面体、④正方体,进而求其外接球半径,并与4比较大小,即可确定答案.【详解】若几何体外接球球心为,半径为,①由题设,几何体为棱长为3的正四面体,为底面中心,则,,所以,可得,即,满足要求;②由题设,几何体为棱长为3的正四棱锥,为底面中心,则,所以,可得,即,不满足要求;③由题设,几何体为棱长为3的正八面体,其外接球直径同棱长为3的正四棱锥,故不满足要求;④由题设,几何体为棱长为3的正方体,体对角线的长度即为外接球直径,所以,不满足要求;故答案为:①14、【解析】将点坐标代入方程中可求得抛物线的方程,从而可得到焦点坐标,进而可求出【详解】解:为抛物线上一点,即有,,抛物线的方程为,焦点为,即有.故答案为:5.15、(答案不唯一)【解析】由题意可得0,结合在定义域上为减函数可取.【详解】因为在定义域为单调增函数所以在定义域上0,又因为在定义域上为减函数,且大于等于0.所以可取(),(),满足条件所以可为().故答案为:(答案不唯一).16、①③【解析】设为曲线上任意一点,判断、、是否满足曲线方程即可判断①;求出曲线过的整点即可判断②;由条件利用即可得,即可判断③;即可得解.【详解】设为曲线上任意一点,则,设点关于原点、轴、轴的对称点分别为、、,因为;;;所以点在曲线上,点、点不在曲线上,所以曲线关于原点对称,但不关于轴、轴对称,故①正确;当时,;当,.此外,当时,;当时,.故曲线过整点,,,,,,故②错误;又,所以恒成立,由可得,当且仅当时等号成立,所以,所以曲线上任一点到原点的距离,故③正确.故答案为:①③.【点睛】本题考查了与曲线方程有关的命题真假判断,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由可知数列是公比为的等比数列,若选①:结合等差数列等差中项的性质计算求解;若选②:利用等比数列等比中项的性质计算求解,若选③:利用直接计算;(2)根据对数的运算,可知数列为等差数列,直接求和即可.小问1详解】由,当时,,即,即,所以数列是公比为的等比数列,若选①:由,即,,所以数列的通项公式为;若选②:由,所以,所以数列的通项公式为;若选③:由,即,所以数列的通项公式为;【小问2详解】由(1)得,所以数列等差数列,所以.18、(1)(2)不需要【解析】(1)直接根据频率和为1计算得到答案.(2)计算平均值得到得到答案.【小问1详解】,解得.【小问2详解】.故不需要进行调整.19、(1)是,;(2)【解析】(1)由题意设出所在直线方程,与抛物线方程联立,化为关于的一元二次方程,由根与系数的关系即可求得为定值;(2)当的斜率为0时,求得三角形的面积为;当的斜率不为0时,由弦长公式求解,再由点到直线的距离公式求到的距离,代入三角形面积公式,利用函数单调性可得三角形的面积大于,由此可得面积的最小值【详解】(1)由题意知,直线斜率存在,不妨设其方程为,联立抛物线的方程可得,设,,则,,所以,,所以,所以是定值(2)当直线的斜率为0时,,又,,此时当直线的斜率不力0时,,又因为,且直线的斜率不为0,所以,即,所以点到直线的距离,此时,因为,所以,综上,面积的最小值为20、(1)(2)答案见解析【解析】(1)根据导数的几何意义可求得切线斜率,结合切点可得切线方程;(2)求导后,分别在、和的情况下,根据的正负可得的单调性.【小问1详解】当时,,,,又,在处的切线方程为:,即;【小问2详解】,令,解得:,;当时,,在上单调递增;当时,若或,则;若,则;在和上单调递增,在上单调递减;当时,若或,则;若,则;在和上单调递增,在上单调递减;综上所述:当时,在上单调递增;当时,在和上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减.21、(1);(2).【解析】(1)将名志愿者进行编号,列举出所有的基本事件,并确定所求事件所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率;(2)列举出甲、乙获得纪念品价值的所有情况,并确定所求事件所包含的情况,利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:因为志愿者年龄在、、内的频率分别为、、,所以用分层抽样的方法抽取的名志愿者年龄在、、内的人数分别为、、.记年龄在内的名志愿者分别记为、、,年龄在的名志愿者分别记为、,年龄在内的名志愿者记为,则从中抽取名志愿者的情况

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论