版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省常州市三河口高级中学数学高二上期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的离心率为5,则其标准方程为()A. B.C. D.2.在平面直角坐标系中,直线+的倾斜角是()A. B.C. D.3.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中学生中抽取容量为50的样本,则应从高三年级抽取的学生数为()A.10 B.15C.20 D.304.在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A. B.C. D.5.已知双曲线的左、右焦点分别为,点A在双曲线上,且轴,若则双曲线的离心率等于()A. B.C.2 D.36.在长方体,,则异面直线与所成角的余弦值是()A. B.C. D.7.已知P是椭圆上的一点,是椭圆的两个焦点且,则的面积是()A. B.2C. D.18.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A B.C. D.9.命题“,”的否定是A., B.,C., D.,10.已知直线与平行,则a的值为()A.1 B.﹣2C. D.1或﹣211.抛物线的焦点坐标为A. B.C. D.12.在中,已知点在线段上,点是的中点,,,,则的最小值为()A. B.4C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为__________14.若某几何体的三视图如图所示,则该几何体的体积是__________15.如图,在三棱锥中,,二面角的余弦值为,若三棱锥的体积为,则三棱锥外接球的表面积为______16.如图,在长方体ABCD—A1B1C1D1中,AB=3,AD=3,AA1=4,P是侧面BCC1B1上的动点,且AP⊥BD1,记点P到平面ABCD的距离为d,则d的最大值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知点.点M满足.记M的轨迹为C.(1)求C的方程;(2)直线l经过点,与轨迹C分别交于点M、N,与直线交于点Q,求证:.18.(12分)已知函数.(1)若,求函数的单调区间;(2)设存在两个极值点,且,若,求证:.19.(12分)已知函数f(x)=(1)求函数f(x)在x=1处的切线方程;(2)求证:20.(12分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?21.(12分)已知椭圆过点,且离心率.(1)求椭圆C的标准方程;(2)若动点在椭圆上,且在第一象限内,点分别为椭圆的左、右顶点,直线分别与椭圆C交于点,过作直线的平行线与椭圆交于点,问直线是否过定点,若经过定点,求出该定点的坐标;若不经过定点,请说明理由.22.(10分)如图1,四边形为直角梯形,,,,,为上一点,为的中点,且,,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面.(2)能否在边上找到一点(端点除外)使平面与平面所成角的余弦值为?若存在,试确定点的位置,若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】双曲线离心率公式和a、b、c的关系即可求得m,从而得到双曲线的标准方程.【详解】∵双曲线,∴,又,∴,∵离心率为,∴,解得,∴双曲线方程.故选:D.2、B【解析】由直线方程得斜率,从而得倾斜角【详解】由直线方程知直角斜率为,在上正切值为1的角为,即为倾斜角故选:B3、C【解析】根据抽取比例乘以即可求解.【详解】由题意可得应从高三年级抽取的学生数为,故选:C.4、C【解析】点在平面内的射影是坐标不变,坐标为0的点.【详解】点在坐标平面内的射影为,故点M的坐标是故选:C5、B【解析】由双曲线定义结合通径公式、化简得出,最后得出离心率.【详解】,,,解得故选:B6、A【解析】在长方体中建立空间直角坐标系,求出相关点的坐标,进而求得向量,的坐标,利用向量的夹角公式即可求得答案.详解】如图,由题意可知DA,DC,两两垂直,则以D为原点,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系.设,则,,,,,,从而,故异面直线与所成角的余弦值是,故选:A.7、A【解析】设,先求出m、n,再利用面积公式即可求解.【详解】在中,设,则,解得:.因为,所以,所以的面积是.故选:A8、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得9、C【解析】特称命题的否定是全称命题,改量词,且否定结论,故命题的否定是“”.本题选择C选项.10、A【解析】根据题意可得,解之即可得解.【详解】解:因为直线与平行,所以,解得.故选:A.11、D【解析】抛物线的标准方程为,从而可得其焦点坐标【详解】抛物线的标准方程为,故其焦点坐标为,故选D.【点睛】本题考查抛物线的性质,属基础题12、C【解析】利用三点共线可得,由,利用基本不等式即可求解.【详解】由点是的中点,则,又因为点在线段上,则,所以,当且仅当,时取等号,故选:C【点睛】本题考查了基本不等式求最值、平面向量共线的推论,考查了基本运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先验证点在曲线上,再求导,代入切线方程公式即可【详解】由题,当时,,故点在曲线上求导得:,所以故切线方程为故答案为:14、1【解析】根据三视图可得如图所示的几何体,从而可求其体积.【详解】据三视图分析知,该几何体为直三棱柱,且底面为直角边为1的等腰直角三角形,高为2,所以其体积故答案为:115、【解析】取的中点,连接,,过点A作,垂足为,设,利用三角形的边角关系求出,利用锥体的体积公式求出的值,确定三棱锥外接球的球心,求解外接球的半径,由表面积公式求解即可【详解】取的中点,连接,,过点A作,交DE的延长线于点,所以为二面角的平面角,设,则,,所以,所以,EH=,因为三棱锥的体积为,所以,解得:,,设外接圆的圆心为,三棱锥外接球的球心为,连接,,,过点O作OF⊥AH于点F,则,,,,设,则,,由勾股定理得:,解得:,所以三棱锥外接球的半径满足,则三棱锥的外接球的表面积为故答案为:【点睛】本题考查了几何体的外接球问题,棱锥的体积公式的理解与应用,解题的关键是确定外接球球心的位置,三棱锥的外接球的球心在过各面外心且与此面垂直的直线上,由此结论可以找到外接球的球心,16、##【解析】以为坐标原点,建立空间直角坐标系,求得的坐标之间的关系,以及坐标的范围,即可求得结果.【详解】以D为原点,为x轴,为y轴,为z轴,建立空间直角坐标系如下所示:设,则,,∵,∴,解得,因为,所以c的最大值为,即点P到平面的距离d的最大值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)根据已知得点M的轨迹C为椭圆,根据椭圆定义可得方程;(2)直线的方程设为,与椭圆方程联立,利用韦达定理及线段长公式进行计算即可.【小问1详解】由椭圆定义得,点M的轨迹C为以点为焦点,长轴长为4的椭圆,设此椭圆的标准方程为,则由题意得,所以C方程为;【小问2详解】设点的坐标分别为,由题意知直线的斜率一定存在,设为,则直线的方程可设为,与椭圆方程联立可得,由韦达定理知,所以,,又因为,所以又由题知,所以,所以,所以,得证.18、(1)在和上单调递增,在上单调递减;(2)证明见解析【解析】(1)首先求出函数的导函数,再令、,分别求出函数的单调区间;(2)先求出,构造函数,求出函数的导数,得到函数的单调区间,求出函数的最小值,从而证明结论【小问1详解】解:当时,,所以,令,解得或,令,解得,所以函数在和上单调递增,在上单调递减;【小问2详解】解:,,,因为存在两个极值点,,所以存在两个互异的正实数根,,所以,,则,所以,所以,令,则,,,在上单调递减,,而,即,19、(1)y=5x-1;(2)证明见解析【解析】(1)求出导函数,求出切线的斜率,切点坐标,然后求切线方程(2)不等式化简为.设,求出导函数,判断函数的单调性求解函数的最值,然后证明即可【详解】解:(1)的定义域为,的导数由(1)可得,则切点坐标为,所求切线方程为(2)证明:即证.设,则,由,得当时,;当时,在上单调递增,在上单调递减,(1),即不等式成立,则原不等式成立20、(1)1600,(平方米);(2)池底设计为边长40米的正方形时总造价最低,最低造价为268800元.【解析】(1)根据题意,由于修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米可得底面积为1600,池壁面积s=.(2)同时池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米,则可知总造价s=,x=40时,则.故可知当x=40时,则有可使得总造价最低,最低造价是268800元.考点:不等式求解最值点评:主要是考查了不等式求解最值的运用,属于基础题.21、(1)(2)过定点,【解析】(1)根据椭圆上的点及离心率求出a,b即可;(2)设点,设直线的方程为,联立方程,得到根与系数的关系,利用条件化简,结合椭圆方程,求出即可得解.【小问1详解】由,有,又,所以,椭圆C的标准方程为.【小问2详解】设点,设直线的方程为.如图,联立,消有:,韦达定理有:由,所以,又,所以又,所以.又所以有,把代入有:,解得或2,又直线不过右端点,所以,则,所以直线过定点.22、(1)证明见解析.(2)存在点,为线段中点【解析】(1)根据线面垂直的判定定理和面面垂直的判定定理,即可证得平面平面;(2)以为坐标原点建立如图所示的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【详解】(1)在直角梯形中,作于于,连接,则,,则,,则,在直角中,可得,则,所以,故,且折叠后与位置关系不变.又因为平面平面,且平面平面,所以平面,因为平面,所以平面平面.(2)在中,由,为的中点,可得.又因为平面平面,且平面平面,所以平面,则以为坐标原点建立如图所示的空间直角坐标系,则,,,则,,设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 5 What are the shirts made of-单词短语及重点句子讲解-人教版九年级英语全册
- 2026年锂电池极片涂布设备项目商业计划书
- 诉讼业务合作协议书
- 美国日本资产广场协议书
- 基于光纤传感的实时监测
- 2026年辽宁石化职业技术学院单招职业技能笔试模拟试题带答案解析
- 股票代持协议书
- 2026年内蒙古北方职业技术学院高职单招职业适应性测试备考试题带答案解析
- 2026年天津城市职业学院高职单招职业适应性考试模拟试题带答案解析
- 2025-2030卫生洁具制造行业供应需求分析及投资评估规划
- 2021年云南公务员考试行测试题及答案
- 如何撰写优秀的历史教学设计
- GB/Z 42217-2022医疗器械用于医疗器械质量体系软件的确认
- 2021高考语文核按钮电子版(教师用书)
- GM/T 0109-2021基于云计算的电子签名服务技术要求
- GB/T 20308-2020产品几何技术规范(GPS)矩阵模型
- 承运商质量体系调查表
- 高等工程流体力学课件
- 教育心理学电子书
- 发电部副职、巡检六月第二期考试(集控)
- 施工电梯通道方案
评论
0/150
提交评论