2026届辽宁省四校高二上数学期末教学质量检测模拟试题含解析_第1页
2026届辽宁省四校高二上数学期末教学质量检测模拟试题含解析_第2页
2026届辽宁省四校高二上数学期末教学质量检测模拟试题含解析_第3页
2026届辽宁省四校高二上数学期末教学质量检测模拟试题含解析_第4页
2026届辽宁省四校高二上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届辽宁省四校高二上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则满足不等式的的取值范围是()A. B.C. D.2.设实系数一元二次方程在复数集C内的根为、,则由,可得.类比上述方法:设实系数一元三次方程在复数集C内的根为,则的值为A.﹣2 B.0C.2 D.43.函数的值域为()A. B.C. D.4.已知双曲线的左、右焦点分别为,过点的直线与圆相切于点,交双曲线的右支于点,且点是线段的中点,则双曲线的渐近线方程为()A. B.C. D.5.在数列中,,,则()A. B.C. D.6.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,最后一句“返回家乡”是“攻破楼兰”的()A.必要条件 B.充分条件C.充要条件 D.既不充分也不必要7.过点且垂直于的直线方程为()A. B.C. D.8.若命题为“,”,则为()A., B.,C., D.,9.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若,则k的取值范围是()A. B.(-∞,]∪[0,+∞)C. D.10.已知是等比数列,,,则()A. B.C. D.11.已知是抛物线的焦点,为抛物线上的动点,且的坐标为,则的最小值是A. B.C. D.12.已知点、为椭圆的左、右焦点,若点为椭圆上一动点,则使得的点的个数为()A. B.C. D.不能确定二、填空题:本题共4小题,每小题5分,共20分。13.在正三棱柱中,,点P满足,其中,,则下列说法中,正确的有_________(请填入所有正确说法的序号)①当时,的周长为定值②当时,三棱锥的体积为定值③当时,有且仅有一个点P,使得④当时,有且仅有一个点P,使得平面14.已知为抛物线上的动点,,,则的最小值为________.15.随机变量X的取值为0,1,2,若,,则_________16.过抛物线的焦点的直线交抛物线于点、,且点的横坐标为,过点和抛物线顶点的直线交抛物线的准线于点,则的面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设a,b是实数,若椭圆过点,且离心率为.(1)求椭圆E的标准方程;(2)过椭圆E的上顶点P分别作斜率为,的两条直线与椭圆交于C,D两点,且,试探究过C,D两点的直线是否过定点?若过定点,求出定点坐标;否则,说明理由.18.(12分)已知双曲线及直线(1)若与有两个不同的交点,求实数的取值范围(2)若与交于,两点,且线段中点的横坐标为,求线段的长19.(12分)设椭圆过,两点,为坐标原点(1)求椭圆的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,,且?若存在,写出该圆的方程,并求的取值范围;若不存在,说明理由20.(12分)如图,已知正方体的棱长为2,,,分别为,,的中点(1)求直线与直线所成角余弦值;(2)求点到平面的距离21.(12分)如图,在四棱锥中,底面ABCD为直角梯形,,,平面底面ABCD,Q为AD的中点,M是棱PC的中点,,,(1)求证:;(2)求直线PB与平面MQB所成角的正弦值22.(10分)记为等差数列的前n项和,已知.(1)求的通项公式;(2)求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用导数判断函数的单调性,根据单调性即可解不等式【详解】由则函数在上单调递增又,所以,解得故选:A2、A【解析】用类比推理得到,再用待定系数法得到,,再根据求解.【详解】,由对应系数相等得:,.故选:A.【点睛】本题主要考查合情推理以及待定系数法,还考查了转化化归的思想和逻辑推理的能力,属于中档题.3、C【解析】根据基本不等式即可求出【详解】因为,当且仅当时取等号,所以函数的值域为故选:C4、D【解析】焦点三角形问题,可结合为三角形的中位线,判断:焦点三角形为直角三角形,并且有,,可由勾股定理得出关系,从而得到关系,从而求得渐近线方程.【详解】由题意知,,且点是线段的中点,点是线段的中点,为三角形的中位线故,故,由双曲线定义有由勾股定理有故则则,故故渐近线方程为:故选:D【点睛】双曲线上一点与两焦点构成的三角形,称为双曲线的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的关系5、A【解析】根据已知条件,利用累加法得到的通项公式,从而得到.【详解】由,得,所以,所以.故选:A.6、B【解析】由题意,“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,按照充分条件、必要条件的定义即可判断【详解】由题意,“不破楼兰终不还”即“不破楼兰”是“不还”的充分条件,即“不破楼兰”可以推出“不还”,但是反过来“不还”的原因有多种,比如战死沙场;即如果已知“还”,一定是已经“破楼兰”,所以“还”是“破楼兰”的充分条件故选:B7、B【解析】求出直线l的斜率,再借助垂直关系的条件即可求解作答.【详解】直线的斜率为,而所求直线垂直于直线l,则所求直线斜率为,于是有:,即,所以所求直线方程为.故选:B8、B【解析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“,”的否命题为“,”,故选:B9、A【解析】圆心为,半径为2,圆心到直线的距离为,解不等式得k的取值范围考点:直线与圆相交的弦长问题10、D【解析】由,,可求出公比,从而可求出等比数的通项公式,则可求出,得数列是一个等比数列,然后利用等比数的求和公式可求得答案【详解】由题得.所以,所以.所以,所以数列是一个等比数列.所以=.故选:D11、C【解析】由题意可得,抛物线的焦点,准线方程为过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角∴当最小时,最小,则当和抛物线相切时,最小设切点,由的导数为,则的斜率为.∴,则.∴,∴故选C点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化,这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.12、B【解析】利用余弦定理结合椭圆的定义可求得、,即可得出结论.【详解】在椭圆中,,,,则,,可得,所以,,解得,此时点位于椭圆短轴的顶点.因此,满足条件的点的个数为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、②④【解析】①结合得到P在线段上,结合图形可知不同位置下周长不同;②由线面平行得到点到平面距离不变,故体积为定值;③结合图形得到不同位置下有,判断出③错误;④结合图形得到有唯一的点P,使得线面垂直.【详解】由题意得:,,,所以P为正方形内一点,①,当时,,即,,所以P在线段上,所以周长为,如图1所示,当点P在处时,,故①错误;②,如图2,当时,即,即,,所以P在上,,因为∥BC,平面,平面,所以点P到平面距离不变,即h不变,故②正确;③,当时,即,如图3,M为中点,N为BC的中点,P是MN上一动点,易知当时,点P与点N重合时,由于△ABC为等边三角形,N为BC中点,所以AN⊥BC,又⊥BC,,所以BN⊥平面,因为平面,则,当时,点P与点M重合时,可证明出⊥平面,而平面,则,即,故③错误;④,当时,即,如图4所示,D为的中点,E为的中点,则P为DE上一动点,易知,若平面,只需即可,取的中点F,连接,又因为平面,所以,若,只需平面,即即可,如图5,易知当且仅当点P与点E重合时,故只有一个点P符合要求,使得平面,故④正确.故选:②④【点睛】立体几何的压轴题,通常情况下要画出图形,利用线面平行,线面垂直及特殊点,特殊值进行排除选项,或者用等体积法进行转化等思路进行解决.14、6【解析】根据抛物线的定义把的长转化为到准线的距离为,进而数形结合求出最小值.【详解】易知为抛物线的焦点,设到准线的距离为,则,而的最小值为到准线的距离,故的最小值为.故答案为:615、##0.4【解析】设出概率,利用期望求出相应的概率,进而利用求方差公式进行求解.【详解】设,则,从而,解得:,所以故答案为:16、##【解析】不妨设点为第一象限内的点,求出点的坐标,可求得直线、的方程,求出点、的坐标,可求得以及点到直线的距离,利用三角形的面积公式可求得的面积.【详解】不妨设点为第一象限内的点,设点,其中,则,可得,即点,抛物线的焦点为,,所以,直线的方程为,联立,解得或,即点,所以,,直线的方程为,抛物线的准线方程为,联立,可得点,点到直线的距离为,因此,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)过定点,坐标为.【解析】(1)根据椭圆的离心率公式,结合代入法进行求解即可;(2)根据直线斜率公式和一元二次方程根与系数的关系进行求解即可.【小问1详解】因为椭圆离心率为,所以有.椭圆过点,所以,由可解:,所以该椭圆方程为:;【小问2详解】由(1)可知:,设直线的方程为:,若,由椭圆的对称性可知:,不符合题意,当时,直线的方程与椭圆方程联立得:,设,,,因为,所以,把代入得:,所以有或,解得:或,当时,直线,直线恒过定点,此时与点重合,不符合题意,当时,,直线恒过点,当直线不存在斜率时,此时,,因为,所以,两点不在椭圆上,不符合题意,综上所述:过C,D两点的直线过定点,定点坐标为.【点睛】关键点睛:根据一元二次方程根与系数关系是解题的关键.18、(1)且;(2)【解析】(1)联立直线与双曲线方程,利用方程组与两个交点,求出k的范围(2)设交点A(x1,y1),B(x2,y2),利用韦达定理以及弦长公式求解即可【详解】(1)联立y=2可得∵与有两个不同的交点,且,且(2)设,由(1)可知,又中点的横坐标为,,或又由(1)可知,为与有两个不同交点时,19、(1)(2)存在,,【解析】(1)根据椭圆E:()过,两点,直接代入方程解方程组,解方程组即可.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,当切线斜率存在时,设该圆的切线方程为,联立,根据,结合韦达定理运算,同时满足,则存在,否则不存在;在该圆的方程存在时,利用弦长公式结合韦达定理得到,结合题意求解即可,当切线斜率不存在时,验证即可.【小问1详解】将,的坐标代入椭圆的方程得,解得,所以椭圆的方程为【小问2详解】假设满足题意的圆存在,其方程为,其中,设该圆的任意一条切线和椭圆交于,两点,当直线的斜率存在时,令直线的方程为,①将其代入椭圆的方程并整理得,由韦达定理得,,②因为,所以,③将①代入③并整理得,联立②得,④因为直线和圆相切,因此,由④得,所以存在圆满足题意当切线的斜率不存在时,易得,由椭圆方程得,显然,综上所述,存在圆满足题意当切线的斜率存在时,由①②④得,由,得,即当切线的斜率不存在时,易得,所以综上所述,存在圆心在原点的圆满足题意,且20、(1)(2)【解析】(1)建立空间直角坐标系,利用向量法由求解;(1)建立空间直角坐标系,先取得平面的一个法向量,,,然后由求解【小问1详解】解:以为原点,为轴,为轴,为轴,建立空间直角坐标系.则,0,,,2,,,2,,,0,,,0,,,0,,,2,,所以,2,,,2,,则直线与直线所成角的余弦值为;【小问2详解】,2,,,2,,设平面的一个法向量,,,则,取,得,1,,又,点到平面的距离21、(1)证明见解析(2)【解析】(1)根据等腰三角形可得,再由面面垂直的性质得出线面垂直,即可求证;(2)建立空间直角坐标系,利用向量法求线面角.【小问1详解】因为Q为AD的中点,,所以,又因为平面底面ABCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论