2026届上海市长宁、宝山、嘉定、青浦四区数学高一上期末监测试题含解析_第1页
2026届上海市长宁、宝山、嘉定、青浦四区数学高一上期末监测试题含解析_第2页
2026届上海市长宁、宝山、嘉定、青浦四区数学高一上期末监测试题含解析_第3页
2026届上海市长宁、宝山、嘉定、青浦四区数学高一上期末监测试题含解析_第4页
2026届上海市长宁、宝山、嘉定、青浦四区数学高一上期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届上海市(长宁、宝山、嘉定、青浦(四区数学高一上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,则()A. B.C. D.2.设集合,,则集合=()A B.C. D.3.已知函数的图象上的每一点的纵坐标扩大到原来的倍,横坐标扩大到原来的倍,然后把所得的图象沿轴向右平移个单位,这样得到的曲线和的图象相同,则已知函数的解析式为A B.C. D.4.集合,,则()A. B.C. D.5.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知命题:函数过定点,命题:函数是幂函数,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A. B.C. D.8.已知,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a9.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则图中阴影部分表示的集合的真子集有()个A.3 B.4C.7 D.810.为了节约水资源,某地区对居民用水实行“阶梯水价”制度:将居民家庭全年用水量(取整数)划分为三档,水价分档递增,其标准如下:阶梯居民家庭全年用水量(立方米)水价(元/立方米)其中水费(元/立方米)水资源费(元/立方米)污水处理费(元/立方米)第一阶梯0-180(含)52.071.571.36第二阶梯181-260(含)74.07第三阶梯260以上96.07如该地区某户家庭全年用水量为300立方米,则其应缴纳的全年综合水费(包括水费、水资源费及污水处理费)合计为元.若该地区某户家庭缴纳的全年综合水费合计为1180元,则此户家庭全年用水量为()A.170立方米 B.200立方米C.220立方米 D.236立方米二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在上存在零点,则实数的取值范围是________12.《九章算术》是我国古代内容极为丰富的数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”其意思为:“有一块扇形的田,弧长为30步,其所在圆的直径为16步,问这块田的面积是多少平方步?”该问题的答案为___________平方步.13.已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是___.14.如图所示,某农科院有一块直角梯形试验田,其中.某研究小组计则在该试验田中截取一块矩形区域试种新品种的西红柿,点E在边上,则该矩形区域的面积最大值为___________.15.已知函数,若方程有四个不同的解,且,则的最小值是______,的最大值是______.16.若函数是定义在上的奇函数,且满足,当时,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设两个向量,,满足,.(1)若,求、的夹角;(2)若、夹角为,向量与的夹角为钝角,求实数的取值范围.18.直线与直线平行,且与坐标轴构成的三角形面积是24,求直线的方程.19.设函数,(1)求函数的值域;(2)设函数,若对,,,求正实数a的取值范围20.设函数.(1)当时,求函数的零点;(2)当时,判断的奇偶性并给予证明;(3)当时,恒成立,求m的最大值.21.从某小学随机抽取100多学生,将他们的身高(单位:)数据绘制成频率分布直方图(如图).(1)求直方图中的值;(2)试估计该小学学生的平均身高;(3)若要从身高在三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在内的学生中选取的人数应为多少人?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由交集的定义求解即可【详解】,由题意,作数轴如图:故,故选:D.2、B【解析】先根据一元二次不等式和对数不等式的求解方法求得集合M、N,再由集合的交集运算可得选项【详解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故选:B3、B【解析】分析:将.的图象轴向左平移个单位,然后把所得的图象上的每一点的纵坐标变为原来的四分之一倍,横坐标变为原来的二分之一倍,即可得到函数的图象,从而可得结果.详解:利用逆过程:将.的图象轴向左平移个单位,得到的图象;将的图象上的每一点的纵坐标变为原来的四分之一倍得到的图象;将的图象上的每一点的横坐标变为原来的四分之一倍得到的图象,所以函数的解析式为,故选B.点睛:本题主要考查了三角函数图象变换,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.4、B【解析】解不等式可求得集合,由交集定义可得结果.【详解】,,.故选:B.5、A【解析】利用充分条件和必要条件的定义判断即可【详解】,所以“”是“”的充分不必要条件故选:A6、B【解析】根据幂函数的性质,从充分性与必要性两个方面分析判断.【详解】若函数是幂函数,则过定点;当函数过定点时,则不一定是幂函数,例如一次函数,所以是的必要不充分条件.故选:B.7、C【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C8、A【解析】找中间量0或1进行比较大小,可得结果【详解】,所以,故选:A.【点睛】此题考查利用对数函数、指数函数的单调性比较大小,属于基础题9、C【解析】先求出A∩B={3,5},再求出图中阴影部分表示的集合为:CU(A∩B)={1,2,4},由此能求出图中阴影部分表示的集合的真子集的个数【详解】∵集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},∴A∩B={3,5},图中阴影部分表示的集合为:CU(A∩B)={1,2,4},∴图中阴影部分表示的集合的真子集有:23–1=8–1=7.故选C【点睛】本题考查集合的真子集的个数的求法,考查交集定义、补集、维恩图等基础知识,考查运算求解能力,是基础题10、C【解析】根据用户缴纳的金额判定全年用水量少于260,利用第二档的收费方式计算即可.【详解】若该用户全年用水量为260,则应缴纳元,所以该户家庭的全年用水量少于260,设该户家庭全年用水量为x,则应缴纳元,解得.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分和并结合图象讨论即可【详解】解:令,则有,原命题等价于函数与在上有交点,又因为在上单调递减,且当时,,在上单调递增,当时,作出两函数的图像,则两函数在上必有交点,满足题意;当时,如图所示,只需,解得,即,综上所述实数的取值范围是.故答案为:12、120【解析】利用扇形的面积公式求解.【详解】由题意得:扇形弧长为30,半径为8,所以扇形的面积为:,故答案为:12013、3【解析】直线AB的方程为+=1,又∵+≥2,即2≤1,当x>0,y>0时,当且仅当=,即x=,y=2时取等号,∴xy≤3,则xy的最大值是3.14、【解析】设,求得矩形面积的表达式,结合基本不等式求得最大值.【详解】设,,,,所以矩形的面积,当且仅当时等号成立.故选:15、①.1②.4【解析】画出的图像,再数形结合分析参数的的最小值,再根据对称性与函数的解析式判断中的定量关系化简再求最值即可.【详解】画出的图像有:因为方程有四个不同的解,故的图像与有四个不同的交点,又由图,,故的取值范围是,故的最小值是1.又由图可知,,,故,故.故.又当时,.当时,,故.又在时为减函数,故当时取最大值.故答案为:(1).1(2).4【点睛】本题主要考查了数形结合求解函数零点个数以及范围的问题,需要根据题意分析交点间的关系,并结合函数的性质求解.属于难题.16、##【解析】由,可得函数是以为一个周期的周期函数,再根据函数的周期性和奇偶性将所求转化为已知区间即可得解.【详解】解:因为,所以函数是以为一个周期的周期函数,所以,又因为函数是定义在上的奇函数,所以,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)且.【解析】(1)根据数量积运算以及结果,结合模长,即可求得,再根据数量积求得夹角;(2)根据夹角为钝角则数量积为负数,求得的范围;再排除向量与不为反向向量对应参数的范围,则问题得解.【详解】(1)因为,所以,即,又,,所以,所以,又,所以向量、的夹角是.(2)因为向量与的夹角为钝角,所以,且向量与不反向共线,即,又、夹角为,所以,所以,解得,又向量与不反向共线,所以,解得,所以的取值范围是且.【点睛】本题考查利用数量积求向量夹角,以及由夹角范围求参数范围,属综合基础题.18、【解析】设直线,则将直线与两坐标轴的交点坐标,代入三角形的面积公式进行运算,求出参数,即可得到答案.【详解】设直线,分别与轴、轴交于两点,则,,那么.所以直线的方程是【点睛】本题考查用待定系数法求直线的方程,两直线平行的性质,以及利用直线的截距求三角形的面积.19、(1);(2).【解析】(1)由题可得,利用基本不等式可求函数的值域;(2)由题可求函数在上的值域,由题可知函数在上的值域包含于函数在上的值域,由此可求正实数a的取值范围【小问1详解】∵,又,,∴,当且仅当,即时取等号,所以,即函数的值域为【小问2详解】∵,设,因为,所以,函数在上单调递增,∴,即,设时,函数的值域为A.由题意知,∵函数,函数图象的对称轴为,当,即时,函数在上递增,则,即,∴,当时,即时,函数在上的最大值为,中的较大者,而且,不合题意,当,即时,函数在上递减,则,即,满足条件的a不存在,综上,20、(1)﹣3和1(2)奇函数,证明见解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定义判断;(3)将时,恒成立,转化为,在上恒成立求解.【小问1详解】解:当时,由,解得或,∴函数的零点为﹣3和1;【小问2详解】由(1)知,则,由,解得,故的定义域关于原点对称,又,,∴,∴是上的奇函数.【小问3详解】∵,且当时,恒成立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论