2026届内蒙古通辽市科左后旗甘旗卡第二高级中学高二上数学期末教学质量检测试题含解析_第1页
2026届内蒙古通辽市科左后旗甘旗卡第二高级中学高二上数学期末教学质量检测试题含解析_第2页
2026届内蒙古通辽市科左后旗甘旗卡第二高级中学高二上数学期末教学质量检测试题含解析_第3页
2026届内蒙古通辽市科左后旗甘旗卡第二高级中学高二上数学期末教学质量检测试题含解析_第4页
2026届内蒙古通辽市科左后旗甘旗卡第二高级中学高二上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届内蒙古通辽市科左后旗甘旗卡第二高级中学高二上数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列结论正确的个数为()①若,则;②若,则;③若,则;④若,则A.4 B.3C.2 D.12.与直线关于轴对称的直线的方程为()A. B.C. D.3.若某群体中成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.4.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定5.已知空间向量,,且,则的值为()A. B.C. D.6.已知点P是双曲线上的动点,过原点O的直线l与双曲线分别相交于M、N两点,则的最小值为()A.4 B.3C.2 D.17.命题:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>08.设村庄外围所在曲线的方程可用表示,村外一小路所在直线方程可用表示,则从村庄外围到小路的最短距离为()A. B.C. D.9.已知,为双曲线:的焦点,为,(其中为双曲线半焦距),与双曲线的交点,且有,则该双曲线的离心率为()A. B.C. D.10.已知命题p:,,则命题p的否定为()A., B.,C, D.,11.设等差数列的前n项和为,且,则()A.64 B.72C.80 D.14412.在平行六面体中,点P在上,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点到准线的距离为,则抛物线的标准方程为___________.(写出一个即可)14.半径为R的圆外接于,且,若,则面积的最大值为________.15.直线与圆相交于两点M,N,若满足,则________16.已知水平放置的是按“斜二测画法”得到如下图所示的直观图,其中,,则原的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的离心率为,左、右焦点分别为、,椭圆上的点到左焦点最近的距离为.(1)求椭圆C的方程;(2)若经过点的直线与椭圆C交于M,N两点,当的面积取得最大值时,求直线的方程.18.(12分)已知动直线l:(m+3)x-(m+2)y+m=0与圆C:(x-3)2+(y-4)2=9(1)求证:无论m为何值,直线l与圆C总相交(2)m为何值时,直线l被圆C所截得的弦长最小?请求出该最小值19.(12分)在①成等差数列;②成等比数列;③这三个条件中任选一个,补充在下面的问题中,并对其求解.问题:已知为数列的前项和,,且___________.(1)求数列的通项公式;(2)记,求数列的前项和.注:如果选择多个条件分别解答,按第一个解答计分.20.(12分)在空间直角坐标系Oxyz中,O为原点,已知点,,,设向量,.(1)求与夹角的余弦值;(2)若与互相垂直,求实数k的值.21.(12分)物联网(Internetofthings)是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库存储货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元)与仓库到车站的距离x(单位:千米)之间的关系为,每月库存货物费(单位:万元)与x之间的关系为:;若在距离车站11.5千米建仓库,则和分别为4万元和23万元.(1)求的值;(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?22.(10分)已知数列的通项公式为:,其中.记为数列的前项和(1)求,;(2)数列的通项公式为,求的前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据常数函数的导数为0,可判断①;根据幂函数的求导公式,可判断②;根据指数函数以及对数函数的求导公式,可判断③④.【详解】由得:,故①错误;对于,,故,故②正确;对于,则,故③错误;对于,则,故④错误,故选:D2、D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.3、A【解析】利用对立事件的概率公式可求得所求事件的概率.【详解】由对立事件概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.4、C【解析】求出的值,结合大边对大角定理可得出结论.【详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.5、B【解析】根据向量垂直得,即可求出的值.【详解】.故选:B.6、C【解析】根据双曲线的对称性可得为的中点,即可得到,再根据双曲线的性质计算可得;【详解】解:根据双曲线的对称性可知为的中点,所以,又在上,所以,当且仅当在双曲线的顶点时取等号,所以故选:C7、B【解析】全称命题的否定是特称命题,把任意改为存在,把结论否定.【详解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故选:B8、B【解析】求出圆心到直线距离,减去半径即为答案.【详解】圆心到直线的距离,则从村庄外围到小路的最短距离为故选:B9、B【解析】根据求得的关系,结合双曲线的定义以及勾股定理,即可求得的等量关系,再求离心率即可.【详解】根据题意,连接,作图如下:显然为直角三角形,又,又点在双曲线上,故可得,解得,由勾股定理可得:,即,即,,故双曲线的离心率为.故选:B.10、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.11、B【解析】利用等差数列下标和性质,求得,再用等差数列前项和公式即可求解.【详解】根据等差数列的下标和性质,,解得,.故选:B.12、C【解析】利用空间向量基本定理,结合空间向量加法的法则进行求解即可.【详解】因为,,所以有,因此,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、(答案不唯一)【解析】设出抛物线方程,根据题意即可得出.【详解】设抛物线的方程为,根据题意可得,所以抛物线的标准方程为.故答案为:(答案不唯一).14、【解析】利用正弦定理将已知条件转化为边之间的关系,然后用余弦定理求得C;利用三角形面积公式,结合两角差的正弦函数公式和二倍角公式得,再利用辅助角公式得,最后利用函数的值域计算得结论.【详解】因为所以由正弦定理得:,即,所以由余弦定理可得:,又,故.由正弦定理得:,,所以,所以当时,S最大,.若,则面积的最大值为.故答案为:.【点睛】本题考查了两角和与差的三角函数公式,二倍角公式及应用,正弦定理,余弦定理,三角形面积公式,函数的图象与性质,属于中档题.15、【解析】由点到直线的距离公式,结合已知可得圆心到直线的距离,再由圆的弦长公式可得,然后可解.【详解】因为,所以,所以,圆心到直线的距离因为,所以,所以故答案为:16、【解析】根据直观图画出原图,再根据三角形面积公式计算可得.【详解】解:依题意得到直观图的原图如下:且,所以故答案为:【点睛】本题考查斜二测画法中原图和直观图面积之间的关系,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意得,,进而解方程即可得答案;(2)根据题意设直线的方程,,,进而,再联立方程,结合韦达定理求解即可.【小问1详解】解:因为椭圆C:的离心率为,所以,因为椭圆上的点到左焦点最近的距离为,所以所以,所以椭圆C的方程为.【小问2详解】解:根据题意,设直线的方程,,设,联立方程得,所以,解得或.,所以的面积为令,则,当且仅当,即时,等号成立.所以当的面积取得最大值时,直线的方程为.18、(1)详见解析(2)m为-时,截得的弦长最小,最小值为2【解析】(1)将直线l变形,可知直线l过定点,证明定点在圆内部;(2)利用垂径定理和弦长公式可得.【详解】(1)证明:直线l变形为m(x-y+1)+(3x-2y)=0令解得,如图所示,故动直线l恒过定点A(2,3)而|AC|==<3(半径)∴点A在圆内,故无论m取何值,直线l与圆C总相交(2)解:由平面几何知识知,弦心距越大,弦长越小,即当AC垂直直线l时,弦长最小,此时kl·kAC=-1,即,∴m=-最小值为故m为-时,直线l被圆C所截得的弦长最小,最小值为2【点睛】考查直线过定点、点与圆的位置关系以及弦长问题,解题的关键是直线系形式的转化.19、(1)(2)【解析】(1)由可知数列是公比为的等比数列,若选①:结合等差数列等差中项的性质计算求解;若选②:利用等比数列等比中项的性质计算求解,若选③:利用直接计算;(2)根据对数的运算,可知数列为等差数列,直接求和即可.小问1详解】由,当时,,即,即,所以数列是公比为的等比数列,若选①:由,即,,所以数列的通项公式为;若选②:由,所以,所以数列的通项公式为;若选③:由,即,所以数列的通项公式为;【小问2详解】由(1)得,所以数列等差数列,所以.20、(1)(2)【解析】(1)由向量的坐标先求出,,,由向量的夹角公式可得答案.(2)由题意可得,从而求出参数的值【小问1详解】由题,,,故,,,所以故与夹角余弦值为.【小问2详解】由与的互相垂直知,,,即21、(1)(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小,最小费用是万元【解析】(1)将题中数据代入解析式可求;(2)利用基本不等式可求解.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论