版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广西南宁第二中学数学高一上期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则()A. B.C. D.2.函数f(x)=|x3|•ln的图象大致为()A. B.C. D.3.已知圆和圆,则两圆的位置关系为A.内含 B.内切C.相交 D.外切4.已知,,,则的大小关系为()A. B.C. D.5.已知圆锥的底面半径为,当圆锥的体积为时,该圆锥的母线与底面所成角的正弦值为()A. B.C. D.6.函数,的最小值是()A. B.C. D.7.将函数的图象向左平移个单位后得到的图象关于轴对称,则正数的最小值是()A. B.C. D.8.已知直线和互相平行,则实数的取值为()A.或3 B.C. D.1或9.奇函数在内单调递减且,则不等式的解集为()A. B.C. D.10.已知直线、、与平面、,下列命题正确的是()A若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.设,,依次是方程,,的根,并且,则,,的大小关系是___12.函数的值域是__________.13.已知函数,则使函数有零点的实数的取值范围是____________14.设角的顶点与坐标原点重合,始边与轴的非负半轴重合,若角的终边上一点的坐标为,则的值为__________15.用表示a,b中的较小者,则的最大值是____.16.若幂函数图像过点,则此函数的解析式是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.提高隧道的车辆通行能力可改善附近路段高峰期间的交通状况.在一般情况下,隧道内的车流速度(单位:千米/小时)和车流密度(单位:辆/千米)满足关系式:.研究表明:当隧道内的车流密度达到辆/千米时造成堵塞,此时车流速度是千米/小时.(1)若车流速度不小于千米/小时,求车流密度的取值范围;(2)隧道内的车流量(单位时间内通过隧道的车辆数,单位:辆/小时)满足,求隧道内车流量的最大值(精确到辆/小时),并指出当车流量最大时的车流密度.18.已知函数,其中.(1)若函数的周期为,求函数在上的值域;(2)若在区间上为增函数,求的最大值,并探究此时函数的零点个数.19.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:甲6699乙79xy(1)若乙的平均得分高于甲的平均得分,求x的最小值;(2)设,,现从甲、乙两人的4局比赛中随机各选取1局,并将其得分分别记为a,b,求的概率;(3)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)20.已知函数.(1)判断在区间上的单调性,并用定义证明;(2)判断的奇偶性,并求在区间上的值域.21.已知函数(1)求函数的对称中心和单调递减区间;(2)若将函数的图象上每一点向右平移个单位得到函数的图象,求函数在区间上的值域
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题中条件,推导出,,,,由此能求出的值【详解】解:函数,,,,,故选A【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题2、A【解析】判断函数的奇偶性和对称性,利用特殊点的函数值是否对应进行排除即可【详解】f(-x)=|x3|•ln=-|x3|•ln=-f(x),则函数f(x)是奇函数,图象关于原点对称,排除B,D,f()=ln=ln<0,排除C,故选A【点睛】本题主要考查函数图象的识别和判断,利用函数奇偶性和特殊值进行排除是解决本题的关键3、B【解析】由于圆,即
表示以为圆心,半径等于1的圆圆,即,表示以为圆心,半径等于3的圆由于两圆的圆心距等于等于半径之差,故两个圆内切故选B4、A【解析】由题,,,所以的大小关系为.故选A.点晴:本题考查的是对数式的大小比较.解决本题的关键是利用对数函数的单调性比较大小,当对数函数的底数大于0小于1时,对数函数是单调递减的,当底数大于1时,对数函数是单调递增的;另外由于对数函数过点(1,0),所以还经常借助特殊值0,1,2等比较大小.5、A【解析】首先理解圆锥体中母线与底面所成角的正弦值为它的高与母线的比值,结合圆锥的体积公式及已知条件即可求出正弦值.【详解】如图,根据圆锥的性质得底面圆,所以即为母线与底面所成角,设圆锥的高为,则由题意,有,所以,所以母线的长为,则圆锥的母线与底面所成角的正弦值为.故选:A【点睛】本题考查了圆锥的体积,线面角的概念,考查运算求解能力,是基础题.本题解题的关键在于根据圆锥的性质得即为母线与底面所成角,再根据几何关系求解.6、D【解析】利用基本不等式可求得的最小值.【详解】,当且仅当时,即当时,等号成立,故函数的最小值为.故选:D.7、A【解析】图象关于轴对称,则其为偶函数,根据三角函数的奇偶性即可求解.【详解】将的图象向左平移个单位后得到,此时图象关于轴对称,则,则,当时,取得最小值故选:A.8、B【解析】利用两直线平行等价条件求得实数m的值.【详解】∵两条直线x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故选B【点睛】已知两直线的一般方程判定两直线平行或垂直时,记住以下结论,可避免讨论:已知,,则,9、A【解析】由已知可作出函数的大致图象,结合图象可得到答案.【详解】因为函数在上单调递减,,所以当时,,当,,又因为是奇函数,图象关于原点对称,所以在上单调递减,,所以当时,,当时,,大致图象如下,由得或,解得,或,或,故选:A.【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出的大致图象,考查了学生分析问题、解决问题的能力.10、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因,所以平面内存在直线,若,则,且,所以,故D正确.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】本题首先可以根据分别是方程的根得出,再根据即可得出,然后通过函数与函数的性质即可得出,最后得出结果【详解】因为,,,所以,因为,,所以,,因为函数与函数都是单调递增函数,前者在后者的上方,所以,综上所述,【点睛】本题考查方程的根的比较大小,通常可通过函数性质或者根的大致取值范围进行比较,考查函数思想,考查推理能力,是中档题12、【解析】首先换元,再利用三角变换,将函数转化为关于二次函数,再求值域.【详解】设,因为,所以,则,,当时,函数取得最小值,当时,函数取得最大值,所以函数的值域是故答案为:13、【解析】令,进而作出的图象,然后通过数形结合求得答案.【详解】令,现作出的图象,如图:于是,当时,图象有交点,即函数有零点.故答案为:.14、##0.5【解析】利用余弦函数的定义即得.【详解】∵角的终边上一点的坐标为,∴.故答案为:.15、【解析】分别做出和的图象,数形结合即可求解.【详解】解:分别做出和的图象,如图所示:又,当时,解得:,故当时,.故答案为:.16、【解析】先用待定系数法设出函数的解析式,再代入点的坐标,计算出参数的值即可得出正确选项.【详解】设幂函数的解析式为,由于函数图象过点,故有,解得,所以该函数的解析式是,故答案为:.【点睛】该题考查的是有关应用待定系数法求幂函数的解析式的问题,属于基础题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值约为3250辆/小时,车流密度约为87辆/千米.【解析】(1)把代入已知式求得,解不等式可得的范围(2)由(1)求得函数,分别利用函数的单调性和基本不等式分段求得最大值,比较可得【详解】解:(1)由题意知当(辆/千米)时,(千米/小时),代入得,解得所以当时,,符合题意;当时,令,解得,所以综上,答:若车流速度不小于40千米/小时,则车流密度的取值范围是.(2)由题意得,当时,为增函数,所以,等号当且仅当成立;当时,即,等号当且仅当,即成立.综上,的最大值约为3250,此时约为87.答:隧道内车流量的最大值约为3250辆/小时,此时车流密度约为87辆/千米.【点睛】关键点点睛:本题考查函数模型的应用,对于已经给出函数模型的问题,关键是直接利用函数模型列出方程、不等式或利用函数性质求解18、(1)(2)最大值为,6个【解析】(1)根据正弦的二倍角公式和辅助角公式可得,利用求出,进而求出,结合三角函数的性质即可得出结果;(2)利用三角函数的性质求出的单调增区间,根据题意和集合之间的关系求出;将问题转化为函数与的图象交点的个数,作出图形,利用数形结合的思想即可得出答案.【小问1详解】由,由周期为且,得,解得,即,由,得,故,所以函数在上的值域为.【小问2详解】因为在区间上单调递增,故在区间上为单调递增由题知,存在使得成立,则必有则,解得,故,所以的最大值为.当时,函数的零点个数转化为函数与的图象的公共点的个数.画图得:由图知与的图象的公共点的个数共6个,即的零点个数为6个.19、(1)5(2)(3)6,7,8【解析】(1)由题意得,又,即可求得x的最小值;(2)利用列举法能求出古典概型的概率;(3)由题设条件能求出的可能的取值为.【小问1详解】由题意得,即.又根据题意知,,所以x的最小值此为5.【小问2详解】设“从甲、乙的4局比赛中随机各选取1局,且得分满足”为事件,记甲的4局比赛为,各局的得分分别是;乙的4局比赛为,各局的得分分别是.则从甲、乙的4局比赛中随机各选取1局,所有可能的结果有16种,它们是:,,,,,,,,,,,,,,,.而事件的结果有8种,它们是:,,,,,,,,∴事件的概率.【小问3详解】的所有可能取值为6,7,8.20、(1)函数在区间上单调递增,证明见解析(2)函数为奇函数,在区间上的值域为【解析】(1)利用定义法证明函数单调性;(2)先得到定义域关于原点对称,结合得到函数为奇函数,利用第一问的单调性求出在区间上的值域.【小问1详解】在区间上单调递增,证明如下:,,且,有.因为,,且,所以,.于是,即.故在区间上单调递增.【小问2详解】的定义域为.因为,所以为奇函数.由(1)得在区间上单调递增,结合奇偶性可得在区间上单调递增.又因为,,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年成都生物制品研究所有限责任公司招聘备考题库带答案详解
- 2026年中药师、中医执业医师等5岗招聘6人备考题库及1套参考答案详解
- 2026年上药控股安徽有限公司招聘备考题库及参考答案详解1套
- 非金属矿井防治水技术方案
- 高坠事故应急演练实施方案
- 煤气泄漏防爆应急处置演练方案
- 医保责任追究制度
- 班主任工作新班主任培训会活动方案
- 西安机坪证考试试题题库及答案
- 2026年全民数字素养和技能培训基地活动方案
- 有限空间大型污水井作业工岗位考试试卷及答案
- 车险组长年终工作总结
- 电商售后客服主管述职报告
- 2025昆明市呈贡区城市投资集团有限公司及下属子公司第一批招聘(12人)笔试考试参考试题及答案解析
- 上海证券有限责任公司校招职位笔试历年参考题库附带答案详解
- 保安员冬季安全知识培训课件
- 智慧园区项目合作协议书
- 遗体火化师招聘考核试卷及答案
- 2025年大学消防指挥专业题库- 火灾现场搜救与救援
- 2024-2025学年山东省聊城市临清市七年级(上)期末数学试卷(含答案)
- GB/T 10454-2025包装非危险货物用柔性中型散装容器
评论
0/150
提交评论