版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届上海市虹口区北虹高级中学高一上数学期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图象经过点,则的值为()A. B.C. D.2.已知扇形的周长为8,扇形圆心角的弧度数是2,则扇形的面积为()A.2 B.4C.6 D.83.如图,在三棱锥中,,分别为AB,AD的中点,过EF的平面截三棱锥得到的截面为EFHG.则下列结论中不一定成立的是()A. B.C.平面 D.平面4.为了得到函数的图象,可以将函数的图象()A.沿轴向左平移个单位 B.沿轴向右平移个单位C.沿轴向左平移个单位 D.沿轴向右平移个单位5.当点在圆上变动时,它与定点的连线的中点的轨迹方程是()A. B.C. D.6.在同一坐标系中,函数与大致图象是()A. B.C. D.7.下列函数中,在R上为增函数的是()A.y=2-xC.y=2x8.已知集合,则下列关系中正确的是()A. B.C. D.9.若函数的三个零点分别是,且,则()A. B.C. D.10.将函数的图象向左平移个单位,再将图象上各点的纵坐标不变,横坐标变为原来的,那么所得图象的函数表达式为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在上的偶函数,且当时,,则当时,___________.12.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.13.若x,y∈(0,+∞),且x+4y=1,则的最小值为________.14.若角的终边与角的终边相同,则在内与角的终边相同的角是______15.当时,函数取得最大值,则___________.16.若函数在上单调递增,则a的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数满足,且.(1)求函数在区间上的值域;(2)当时,函数与的图像没有公共点,求实数的取值范围.18.已知函数是指数函数(1)求的解析式;(2)若,求的取值范围19.已知函数.(1)当时,求函数的零点;(2)若不等式在时恒成立,求实数k的取值范围.20.汕头市某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?21.已知二次函数的图象过点,且与轴有唯一的交点.(1)求表达式;(2)设函数,若上是单调函数,求实数的取值范围;(3)设函数,记此函数的最小值为,求的解析式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】将点的坐标代入函数解析式,求出的值即可.【详解】因为函数的图象经过点,所以,则.故选:C.2、B【解析】由给定条件求出扇形半径和弧长,再由扇形面积公式求出面积得解.【详解】设扇形所在圆半径r,则扇形弧长,而,由此得,所以扇形的面积.故选:B3、D【解析】利用线面平行的判定和性质对选项进行排除得解.【详解】对于,,分别为,的中点,,EF与平面BCD平行过的平面截三棱锥得到的截面为,平面平面,,,故AB正确;对于,,平面,平面,平面,故正确;对于,的位置不确定,与平面有可能相交,故错误.故选:D.【点睛】熟练运用线面平行的判定和性质是解题的关键.4、C【解析】利用函数y=Asin(ωx+φ)的图象变换规律,得出结论【详解】,将函数的图象沿轴向左平移个单位,即可得到函数的图象,故选:C【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题5、D【解析】设中点的坐标为,则,利用在已知的圆上可得的中点的轨迹方程.【详解】设中点的坐标为,则,因为点在圆上,故,整理得到.故选:D.【点睛】求动点的轨迹方程,一般有直接法和间接法,(1)直接法,就是设出动点的坐标,已知条件可用动点的坐标表示,化简后可得动点的轨迹方程,化简过程中注意变量的范围要求.(2)间接法,有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即可得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程.6、B【解析】根据题意,结合对数函数与指数函数的性质,即可得出结果.【详解】由指数函数与对数函数的单调性知:在上单调递增,在上单调递增,只有B满足.故选:B.7、C【解析】对于A,y=2-x=12x,在R上是减函数;对于B,y=x2在-∞,0上是减函数,在0,+∞上是增函数;对于C,当【详解】解:对于A,y=2-x=12对于B,y=x2在-∞,0对于C,当x≥0时,y=2x是增函数,当x<0时,y=x是增函数,所以函数fx对于D,y=lgx的定义域是0,+∞故选:C.8、C【解析】利用元素与集合、集合与集合的关系可判断各选项的正误.详解】∵,∴,所以选项A、B、D错误,由空集是任何集合的子集,可得选项C正确.故选:C.【点睛】本题考查元素与集合、集合与集合关系的判断,属于基础题.9、D【解析】利用函数的零点列出方程,再结合,得出关于的不等式,解之可得选项【详解】因为函数的三个零点分别是,且,所以,,解得,所以函数,所以,又,所以,故选:D【点睛】关键点睛:本题考查函数的零点与方程的根的关系,关键在于准确地运用零点存在定理10、B【解析】将函数的图象向左平移个单位后所得图象对应的的解析式为;再将图象上各点纵坐标不变,横坐标变为原来的,所得图象对应的解析式为.选B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设,则,求出的表达式,再由即可求解.【详解】设,则,所以,因为是定义在上的偶函数,所以,所以当时,故答案为:.12、9【解析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.13、9【解析】由x+4y=1,结合目标式,将x+4y替换目标式中的“1”即可得到基本不等式的形式,进而求得它的最小值,注意等号成立的条件【详解】∵x,y∈(0,+∞)且x+4y=1∴当且仅当有时取等号∴的最小值为9故答案为:9【点睛】本题考查了基本不等式中“1”的代换,注意基本不等式使用条件“一正二定三相等”,属于简单题14、【解析】根据角的终边与角的终边相同,得到,再得到,然后由列式,根据,可得整数的值,从而可得.【详解】∵(),∴()依题意,得(),解得(),∴,∴在内与角的终边相同的角为故答案为【点睛】本题考查了终边相同的角的表示,属于基础题.15、##【解析】由辅助角公式,正弦函数的性质求出,,再根据两角和的正切和公式,诱导公式求.【详解】(其中,),当时,函数取得最大值∴,,即,,所以,.故答案为:.16、【解析】根据函数的单调性得到,计算得到答案.【详解】函数在上单调递增,则故答案为:【点睛】本题考查了函数的单调性,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)通过已知得到方程组,解方程组即得二次函数的解析式,再利用二次函数的图象求函数的值域得解;(2)求出,等价于,求出二次函数最小值即得解.【小问1详解】解:设、∴,∴,∴,,又,∴,∴.∵对称轴为直线,,,,∴函数的值域.【小问2详解】解:由(1)可得:∵直线与函数的图像没有公共点∴,当时,∴,∴.18、(1)(2)【解析】(1)由指数函数定义可直接构造方程组求得,进而得到所求解析式;(2)将不等式化为,根据对数函数单调性和定义域要求可构造不等式组求得结果.【小问1详解】为指数函数,,解得:,.【小问2详解】由(1)知:,,解得:,的取值范围为.19、(1);(2).【解析】(1)由对数函数的性质可得,再解含指数的一元二次方程,结合指数的性质即可得解.(2)由题设有在上恒成立,判断的单调性并确定其值域,即可求k的范围.【小问1详解】由题设,令,则,∴,可得或(舍),∴,故的零点为.【小问2详解】由,则,即在上恒成立,∵在上均递减,∴在上递减,则,∴k的取值范围为.20、(1)2400(元);(2)应将售价定为125元,最大销售利润是2500元.【解析】(1)由销售利润=单件成本×销售量,即可求商家降价前每星期销售利润;(2)由题意得,根据二次函数的性质即可知最大销售利润及对应的售价.【详解】(1)由题意,商家降价前每星期的销售利润为(元);(2)设售价定为元,则销售利润.当时,有最大值2500.∴应将售价定为125元,最大销售利润是2500元.21、(1)(2)或(3)见解析【解析】(1)由已知条件分别求出的值,得出解析式;(2)求出函数的表达式,由已知得出区间在对称轴的一侧,进而求出的范围;(3)函数,对称轴,图象开口向上,讨论不同情况下在上的单调性,可得函数的最小值的解析式试题解析:(1)依题意得,,解得,,,从而;(2),对称轴为,图象开口向上当即时,在上单调递增,当即时,在上单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园安全课件2016
- 防滑坡安全课件及教案
- 课件圆形翻转后变色
- 心脏支架产品设计
- 艺术品真伪鉴定免责条款服务合同
- 个人税收递延型商业养老保险
- 汽修厂安全消防培训课件
- 六年级单元试卷及答案
- 冰雪天气安全教案课件
- 选煤厂安全流程培训课件
- 深圳市南山区雨污分流施工报价表
- 人力资源服务机构管理制度
- 北师大版六年级上册数学错题资源
- 联合利华中国公司销售运作手册
- GB/T 42287-2022高电压试验技术电磁和声学法测量局部放电
- 电子版个人简历简单模板
- 压覆矿产资源查询申请表
- GB/T 9115-2010对焊钢制管法兰
- GB/T 6495.1-1996光伏器件第1部分:光伏电流-电压特性的测量
- GB/T 26160-2010中国未成年人头面部尺寸
- 《凝聚态物理学新论》配套教学课件
评论
0/150
提交评论