版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省长治市三校高一上数学期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,且,则满足条件的的值得个数是A.1 B.2C.3 D.42.定义在上的奇函数,在上单调递增,且,则满足的的取值范围是()A. B.C. D.3.若函数是偶函数,函数是奇函数,则()A.函数是奇函数 B.函数是偶函数C.函数是偶函数 D.函数是奇函数4.为了得到函数的图像,只需把函数的图像上()A.各点的横坐标缩短到原来的倍,再向左平移个单位B.各点的横坐标缩短到原来的倍,再向左平移个单位C.各点的横坐标缩短到原来的2倍,再向左平移个单位D.各点的横坐标缩短到原来的2倍,再向左平移个单位5.已知函数的零点在区间上,则()A. B.C. D.6.已知,,满足,则()A. B.C. D.7.已知,且点在线段的延长线上,,则点的坐标为()A. B.C. D.8.函数的部分图象是()A. B.C. D.9.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度得到 B.向右平移个单位长度得到C.向左平移个单位长度得到 D.向右平移个单位长度得到10.设则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某池塘里原有一块浮萍,浮萍蔓延后的面积(单位:平方米)与时间(单位:月)的关系式为(且)图象如图所示.则下列结论:①浮萍蔓延每个月增长的面积都相同;②浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的;③浮萍蔓延每个月增长率相同,都是;④浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少.其中正确结论的序号是_____12.命题“”的否定是___________.13.若且,则取值范围是___________14.已知在平面直角坐标系中,角顶点在原点,始边与轴的正半轴重合,终边经过点,则___________.15.命题“”的否定为___________.16.若命题“”为真命题,则的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)设,若是偶函数,求实数的值;(2)设,求函数在区间上的值域;(3)若不等式恒成立,求实数的取值范围18.已知函数,图象上两相邻对称轴之间的距离为;_______________;(Ⅰ)在①的一条对称轴;②的一个对称中心;③的图象经过点这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(Ⅱ)若动直线与和的图象分别交于、两点,求线段长度的最大值及此时的值.注:如果选择多个条件分别解答,按第一个解答计分.19.设直线与相交于一点.(1)求点的坐标;(2)求经过点,且垂直于直线的直线的方程.20.指数函数(且)和对数函数(且)互为反函数,已知函数,其反函数为(1)若函数在区间上单调递减,求实数的取值范围;(2)是否存在实数使得对任意,关于的方程在区间上总有三个不等根,,?若存在,求出实数及的取值范围;若不存在,请说明理由21.下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x的集合,并求出最大值、最小值.(1),;(2),.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】令则即当时,当时,则令,,由图得共有个点故选2、B【解析】由题意可得,,在递增,分别讨论,,,,,结合的单调性,可得的范围【详解】函数是定义在上的奇函数,在区间上单调递增,且(1),可得,,在递增,若时,成立;若,则成立;若,即,可得(1),即有,可得;若,则,,可得,解得;若,则,,可得,解得综上可得,的取值范围是,,故选:B3、C【解析】根据奇偶性的定义判断即可;【详解】解:因为函数是偶函数,函数是奇函数,所以、,对于A:令,则,故是非奇非偶函数,故A错误;对于B:令,则,故为奇函数,故B错误;对于C:令,则,故为偶函数,故C正确;对于D:令,则,故为偶函数,故D错误;故选:C4、B【解析】各点的横坐标缩短到原来的倍,变为,再向左平移个单位,得到.5、C【解析】根据解析式,判断的单调性,结合零点存在定理,即可求得零点所在区间,结合题意,即可求得.【详解】函数的定义域为,且在上单调递增,故其至多一个零点;又,,故的零点在区间,故.故选:6、A【解析】将转化为是函数的零点问题,再根据零点存在性定理即可得的范围,进而得答案.【详解】解:因为函数在上单调递减,所以;;因为满足,即是方程的实数根,所以是函数的零点,易知函数f(x)在定义域内是减函数,因为,,所以函数有唯一零点,即.所以.故选:A.【点睛】本题考查对数式的大小,函数零点的取值范围,考查化归转化思想,是中档题.本题解题的关键在于将满足转化为是函数的零点,进而根据零点存在性定理即可得的范围.7、C【解析】设,根据题意得出,由建立方程组求解即可.【详解】设,因为,所以即故选:C【点睛】本题主要考查了由向量共线求参数,属于基础题.8、C【解析】首先判断函数的奇偶性,即可排除AD,又,即可排除B.【详解】因为,定义域为R,关于原点对称,又,故函数为奇函数,图象关于原点对称,故排除AD;又,故排除B.故选:C.9、A【解析】先利用辅助角公式将函数变形,然后利用图象的平移变换分析求解即可【详解】解:函数,将函数图象向左平移个单位可得的图象故选:10、D【解析】由指数函数、对数函数的单调性,并与0,1比较可得答案【详解】由指数、对数函数的性质可知:,,所以有.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解析】由,可求得的值,可得出,计算出萍蔓延月至月份增长的面积和月至月份增长的面积,可判断①的正误;计算出浮萍蔓延个月后的面积和浮萍蔓延个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【详解】由已知可得,则.对于①,浮萍蔓延月至月份增长的面积为(平方米),浮萍蔓延月至月份增长的面积为(平方米),①错;对于②,浮萍蔓延个月后的面积为(平方米),浮萍蔓延个月后的面积为(平方米),所以,浮萍蔓延个月后的面积是浮萍蔓延个月后的面积的,②对;对于③,浮萍蔓延第至个月的增长率为,所以,浮萍蔓延每个月增长率相同,都是,③错;对于④,浮萍蔓延到平方米所经过的时间、蔓延到平方米所经过的时间的和蔓延到平方米的时间分别为、、,则,,,所以,,所以,浮萍蔓延到平方米所经过的时间与蔓延到平方米所经过的时间的和比蔓延到平方米所经过的时间少,④对.故答案为:②④.12、,.【解析】根据特称命题的否定的性质进行求解即可.【详解】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可,命题“,”的否定是“,”,故答案为:,.13、或【解析】分类讨论解对数不等式即可.【详解】因为,所以,当时,可得,当时,可得.所以或故答案为:或14、【解析】根据角的终边经过点,利用三角函数的定义求得,然后利用二倍角公式求解.【详解】因为角的终边经过点,所以,所以,所以,故答案为:15、【解析】根据特称命题的否定为全称命题求解.【详解】因为特称命题的否定为全称命题,所以“”的否定为“”,故答案:.16、【解析】依题意可得恒成立,则,得到一元二次不等式,解得即可;【详解】解:依题意可得,命题等价于恒成立,故只需要解得,即故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)根据偶函数定义得,再根据对数运算性质解得实数的值;(2)根据对数运算法则得,再求分式函数值域,即得在区间上的值域(3)设,将不等式化为,再分离变量得且,最后根据基本不等式可得最值,即得实数的取值范围.试题解析:(1)因为是偶函数,所以,则恒成立,所以.(2),因为,所以,所以,则,则,所以,即函数的值域为.(3)由,得,设,则,设若则,由不等式对恒成立,①当,即时,此时恒成立;②当,即时,由解得;所以;若则,则由不等式对恒成立,因为,所以,只需,解得;故实数的取值范围是.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.18、(Ⅰ)选①或②或③,;(Ⅱ)当或时,线段的长取到最大值.【解析】(Ⅰ)先根据题中信息求出函数的最小正周期,进而得出.选①,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;选②,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;选③,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;(Ⅱ)令,利用三角恒等变换思想化简函数的解析式,利用正弦型函数的基本性质求出在上的最大值和最小值,由此可求得线段长度的最大值及此时的值.【详解】(Ⅰ)由于函数图象上两相邻对称轴之间的距离为,则该函数的最小正周期为,,此时.若选①,则函数的一条对称轴,则,得,,当时,,此时,;若选②,则函数的一个对称中心,则,得,,当时,,此时,;若选③,则函数的图象过点,则,得,,,,解得,此时,.综上所述,;(Ⅱ)令,,,,当或时,即当或时,线段的长取到最大值.【点睛】本题考查利用三角函数的基本性质求解析式,同时也考查了余弦型三角函数在区间上最值的计算,考查计算能力,属于中等题.19、(1);(2).【解析】(1)将两直线方程联立,求出方程组的公共解,即可得出点的坐标;(2)求出直线的斜率,可得出垂线的斜率,然后利用点斜式方程可得出所求直线的方程,化为一般式即可.【详解】(1)由,解得,因此,点的坐标为;(2)直线斜率为,垂直于直线的直线斜率为,则过点且垂直于直线的直线的方程为,即:.【点睛】本题两直线交点坐标计算,同时也考查了直线的垂线方程的求解,解题时要将两直线的垂直关系转化为斜率关系,考查计算能力,属于基础题.20、(1);(2)存在,,.【解析】(1)利用复合函数的单调性及函数的定义域可得,即得;(2)由题可得,令,则可得时,方程有两个不等的实数根,当时方程有且仅有一个根在区间内或1,进而可得对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,再利用二次函数的性质可得,即得.【小问1详解】∵函数,其反函数为,∴,∴,又函数在区间上单调递减,又∵在定义域上单调递增,∴函数在区间上单调递减,∴,解得;【小问2详解】∵,∴,∵,,令,则时,方程有两个不等的实数根,不妨设为,则,即,∴,即方程有两个不等的实数根,且两根积为1,当时方程有且仅有一个根在区间内或1,由,可得,令,则原题目等价于对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,则必有,∴,解得,此时,则其根在区间内,所以,综上,存在,使得对任意,关于的方程在区间上总有三个不等根,,,的取值范围为.【点睛】关键点点睛:本题第二问关键是把问题转化为对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,进而利用二次函数性质可求.21、(1)有最大值、最小值.见解析(2)有最大值、最小值.见解析【解析】(1)函数有最大最小值,使函数,取得最大值最小值的x的集合,就是使函数,取得最大值最小值的x的集合;(2)令,使函数,取得最大值的x的集合,就是使,取得最小值的z的集合,使函数,取得最小值的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗机构运营分析与改进
- 课件的布局方向
- 2026年智能补光灯项目营销方案
- 养老院日常照护制度
- 养老院工作人员交接班制度
- 肿瘤分子靶向药物治疗
- 中医养生与慢性病治疗新理念
- 课件的利弊教学课件
- 医疗资源优化配置的可持续发展
- 医院医学科研中心主任谈医学科研项目管理与成果转化
- 北京市2025-2026学年高二(上)期末物理适应卷C(含答案)
- 2026年黑龙江高职单招考试高考语文试卷试题(含答案)
- 完整版老旧小区改造工程施工组织设计方案
- 《细胞的增殖》说课课件-2024-2025学年高一上学期生物人教版(2019)必修1
- 中考数学选择填空压轴题:函数的几何综合问题
- 2024年重庆市普通高中学业水平考试信息技术练习题及答案
- 房产盘活工作总结
- 全文版曼娜回忆录
- 第29课+中国特色社会主义进入新时代高一历史中外历史纲要上册
- GB/T 14781-2023土方机械轮式机器转向要求
- 【盘锦宋大房食品企业仓储管理现状、问题及优化策略开题报告文献综述3200字】
评论
0/150
提交评论