版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省新余第四中学、上高第二中学2026届数学高二上期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为实数,则曲线:不可能是()A.抛物线 B.双曲线C.圆 D.椭圆2.双曲线:的一条渐近线与直线垂直,则它的离心率为()A. B.C. D.3.已知双曲线的左、右焦点分别为,,过作圆的切线分别交双曲线的左、右两支于,,且,则双曲线的渐近线方程为()A. B.C. D.4.等差数列的首项为正数,其前n项和为.现有下列命题,其中是假命题的有()A.若有最大值,则数列的公差小于0B.若,则使的最大的n为18C.若,,则中最大D.若,,则数列中的最小项是第9项5.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟6.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.7.已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数n的值是()A. B.C. D.8.焦点在轴的正半轴上,且焦点到准线的距离为的抛物线的标准方程是()A. B.C. D.9.已知圆与直线至少有一个公共点,则的取值范围为()A. B.C. D.10.设圆:和圆:交于A,B两点,则线段AB所在直线的方程为()A. B.C. D.11.已知,是双曲线C:(,)的两个焦点,过点与x轴垂直的直线与双曲线C交于A、B两点,若是等腰直角三角形,则双曲线C的离心率为()A. B.C. D.12.已知过点的直线l与圆相交于A,B两点,则的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在△ABC中,,AB=3,,则________14.小明同学发现家中墙壁上灯光边界类似双曲线的一支.如图,P为双曲线的顶点,经过测量发现,该双曲线的渐近线相互垂直,AB⊥PC,AB=60cm,PC=20cm,双曲线的焦点位于直线PC上,则该双曲线的焦距为____cm.15.甲、乙两名运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则甲、乙两组数据的中位数是______.16.已知双曲线的右焦点为F,以F为圆心,以a为半径的圆与双曲线C的一条渐近线交于A,B两点.若(O为坐标原点),则双曲线C的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,,设动点P满足直线PA与PB的斜率之积为,记动点P的轨迹为曲线E(1)求曲线E的方程;(2)若动直线l经过点,且与曲线E交于C,D(不同于A,B)两点,问:直线AC与BD的斜率之比是否为定值?若为定值,求出该定值;若不为定值,请说明理由18.(12分)已知关于的不等式的解集为.(1)求的值;(2)若,求的最小值,并求此时的值.19.(12分)已知数列满足,.(1)求数列的通项公式;(2)记,其中表示不超过最大整数,如,.(i)求、、;(ii)求数列的前项的和.20.(12分)在平面直角坐标系xOy中,椭圆C:的左,右顶点分别为A、B,点F是椭圆的右焦点,,(1)求椭圆C的方程;(2)不过点A的直线l交椭圆C于M、N两点,记直线l、AM、AN的斜率分别为k、、.若,证明直线l过定点,并求出定点的坐标21.(12分)已知椭圆,离心率为,椭圆上任一点满足(1)求椭圆的方程;(2)若动直线与椭圆相交于、两点,若坐标原点总在以为直径的圆外时,求的取值范围.22.(10分)已知数列的前项和为,若.(1)求的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据圆的方程、椭圆的方程、双曲线的方程和抛物线的方程特征即可判断.【详解】解:对A:因为曲线C的方程中都是二次项,所以根据抛物线标准方程的特征曲线C不可能是抛物线,故选项A正确;对B:当时,曲线C为双曲线,故选项B错误;对C:当时,曲线C为圆,故选项C错误;对D:当且时,曲线C为椭圆,故选项D错误;故选:A.2、A【解析】先利用直线的斜率判定一条渐近线与直线垂直,求出,再利用双曲线的离心率公式和进行求解.【详解】因为直线的斜率为,所以双曲线的一条渐近线与直线垂直,所以,即,则双曲线的离心率.故选:A.卷II(非选择题3、D【解析】直线的斜率为,计算,,利用余弦定理得到,化简知,得到答案【详解】由题意知直线的斜率为,,又,由双曲线定义知,,.由余弦定理:,,即,即,解得.故双曲线渐近线的方程为.故答案选D【点睛】本题考查了双曲线的渐近线,与圆的关系,意在考查学生的综合应用能力和计算能力.4、B【解析】由有最大值可判断A;由,可得,,利用可判断BC;,得,,可判断D.【详解】对于选项A,∵有最大值,∴等差数列一定有负数项,∴等差数列为递减数列,故公差小于0,故选项A正确;对于选项B,∵,且,∴,,∴,,则使的最大的n为17,故选项B错误;对于选项C,∵,,∴,,故中最大,故选项C正确;对于选项D,∵,,∴,,故数列中的最小项是第9项,故选项D正确.故选:B.5、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.6、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.7、C【解析】首先根据抛物线焦半径公式得到,从而得到,再根据曲线的一条渐近线与直线AM平行,斜率相等求解即可.【详解】由题知:,解得,抛物线.双曲线的左顶点为,,因为双曲线的一条渐近线与直线平行,所以,解得.故选:C8、A【解析】直接由焦点位置及焦点到准线的距离写出标准方程即可.【详解】由焦点在轴的正半轴上知抛物线开口向上,又焦点到准线的距离为,故抛物线的标准方程是.故选:A.9、C【解析】利用点到直线距离公式求出圆心到直线的距离范围,从而求出的取值范围.【详解】圆心到直线的距离,当且仅当时等号成立,故只需即可.故选:C10、A【解析】将两圆的方程相减,即可求两圆相交弦所在直线的方程.【详解】设,因为圆:①和圆:②交于A,B两点所以由①-②得:,即,故坐标满足方程,又过AB的直线唯一确定,即直线的方程为.故选:A11、B【解析】根据等腰直角三角形的性质,结合双曲线的离心率公式进行求解即可.【详解】由题意不妨设,,当时,由,不妨设,因为是等腰直角三角形,所以有,或舍去,故选:B12、D【解析】经判断点在圆内,与半径相连,所以与垂直时弦长最短,最长为直径【详解】将代入圆方程得:,所以点在圆内,连接,当时,弦长最短,,所以弦长,当过圆心时,最长等于直径8,所以的取值范围是故选:D二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】计算得出,可得出,再利用平面向量数量积的运算性质可求得结果.【详解】∵,,,∴故答案为:3.14、【解析】建立直角坐标系,利用代入法、双曲线的对称性进行求解即可.【详解】建立如图所示的直角坐标系,设双曲线的标准方程为:,因为该双曲线的渐近线相互垂直,所以,即,因为AB=60cm,PC=20cm,所以点的坐标为:,代入,得:,因此有,所以该双曲线的焦距为,故答案为:15、【解析】先由极差以及平均数得出,进而得出中位数.【详解】由可得,,,因为乙得分的平均值为24,所以,所以甲、乙两组数据的中位数是.故答案为:16、【解析】过F作,利用点到直线距离可求出,再根据勾股定理可得,,由可得,即可建立关系求解.【详解】如图,过F作,则E是AB中点,设渐近线为,则,则在直角三角形OEF中,,在直角三角形BEF中,,,则,即,即,则,即,.故答案为:.【点睛】本题考查双曲线离心率的求解,解题的关键是分别表示出,,由建立关系.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)直线AC和BD的斜率之比为定值【解析】(1)设,依据两点的斜率公式可求得曲线E的方程(2)设直线l:,,,联立方程得,得出根与系数的关系,表示直线AC的斜率,直线BD的斜率,并代入计算,可得其定值.【详解】解:(1)设,依题意可得,所以,所以曲线E的方程为(2)依题意,可设直线l:,,,由,可得,则,,因为直线AC的斜率,直线BD的斜率,因为,所以,所以直线AC和BD的斜率之比为定值18、(1);(2),.【解析】(1)利用根与系数的关系,得到等式和不等式,最后求出的值;(2)化简函数的解析式,利用基本不等式可以求出函数的最小值.【小问1详解】由题意知:,解得【小问2详解】由(1)知,∴,由对勾函数单调性知在上单调递减,∴,即当,函数的最小值为19、(1);(2)(i),,;(ii).【解析】(1)推导出数列为等差数列,确定该数列的首项和公差,即可求得数列的通项公式;(2)(i)利用对数函数的单调性结合题中定义可求得、、的值;(ii)分别解不等式、、,结合题中定义可求得数列的前项的和.【小问1详解】解:因为,,则,可得,,可得,以此类推可知,对任意的,.由,变形为,是一个以为公差的等差数列,且首项为,所以,,因此,.【小问2详解】解:(i),则,,则,故,,则,故;(ii),当时,即当时,,当时,即当时,,当时,即当时,,因此,数列的前项的和为.20、(1);(2)证明见解析,(-5,0).【解析】(1)写出A、B、F的坐标,求出向量坐标,根据向量的关系即可列出方程组,求得a、b、c和椭圆的标准方程;(2)设直线l的方程为y=kx+m,,.联立直线l与椭圆方程,根据韦达定理得到根与系数的关系,求出,根据即可求得k和m的关系,即可证明直线过定点并求出该定点.【小问1详解】由题意,知A(-a,0),B(a,0),F(c,0)∵,∴解得从而b2=a2-c2=3∴椭圆C的方程;【小问2详解】设直线l的方程为y=kx+m,,∵直线l不过点A,因此-2k+m≠0由得时,,,∴由,可得3k=m-2k,即m=5k,故l的方程为y=kx+5k,恒过定点(-5,0).21、(1)(2)或【解析】(1)由已知计算可得即可得出方程.(2)由已知可得联立方程,结合韦达定理计算即可得出结果.【小问1详解】依题得解得:椭圆的方程为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 刘铁民安全生产课件
- 旅游市场新纪元
- 立秋节气养生之道
- 立春主题新媒体营销
- 初中音乐:校园树木病虫害防治音乐剧创作与排练教学研究课题报告
- 课件备注不同步问题
- 建筑施工安全教育课件tpp
- 人工智能助力下的小学语文、数学、英语教师教学互动模式创新研究教学研究课题报告
- 高中英语教学中智能同传系统对跨文化交际自信心提升作用研究课题报告教学研究课题报告
- 校园安全教育课件
- 神经内外科会诊转诊协作规范
- 高中诗歌手法鉴赏考试题
- 2025年及未来5年中国幽门螺杆菌药物行业市场调查研究及发展战略规划报告
- 设备安装安全施工培训课件
- 2025至2030年中国水泥基渗透结晶型堵漏材料市场分析及竞争策略研究报告
- 电子屏安全培训课件
- 妇科临床路径课件
- 高空作业生命绳安全使用规范
- (标准)储物间转让合同协议书
- 装修工人出意外合同范本
- 水库大坝渗漏勘探方案
评论
0/150
提交评论