2026届山东省日照市第一中学高二数学第一学期期末质量检测试题含解析_第1页
2026届山东省日照市第一中学高二数学第一学期期末质量检测试题含解析_第2页
2026届山东省日照市第一中学高二数学第一学期期末质量检测试题含解析_第3页
2026届山东省日照市第一中学高二数学第一学期期末质量检测试题含解析_第4页
2026届山东省日照市第一中学高二数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省日照市第一中学高二数学第一学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,,且,则()A. B.C. D.2.已知点,点关于原点对称点为,则()A. B.C. D.3.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.5.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知直线与直线垂直,则实数()A.10 B.C.5 D.7.已知椭圆方程为:,则其离心率为()A. B.C. D.8.已知向量,,且,则值是()A. B.C. D.9.已知数列中,,,是的前n项和,则()A. B.C. D.10.双曲线的左、右焦点分别为F1,F2,点P在双曲线上,下列结论不正确的是()A.该双曲线的离心率为B.该双曲线的渐近线方程为C.点P到两渐近线的距离的乘积为D.若PF1⊥PF2,则△PF1F2的面积为3211.如图所示,在平行六面体中,,,,点是的中点,点是上的点,且,则向量可表示为()A. B.C. D.12.曲线上的点到直线的最短距离是()A. B.C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.近年来,我国外卖业发展迅猛,外卖小哥穿梭在城市的大街小巷成为一道道亮丽的风景线.他们根据外卖平台提供的信息到外卖店取单,某外卖小哥每天来往于r个外卖店(外卖店的编号分别为1,2,…,r,其中),约定:每天他首先从1号外卖店取单,称为第1次取单,之后,他等可能的前往其余个外卖店中的任何一个店取单,称为第2次取单,依此类推.假设从第2次取单开始,他每次都是从上次取单的店之外的个外卖店取单.设事件表示“第k次取单恰好是从1号店取单()”,是事件发生的概率,显然,,则______,与的关系式为______14.已知直线与曲线,在曲线上随机取一点,则点到直线的距离不大于的概率为__________.15.已知数列的前n项和为,且满足通项公式,则________16.已知球的表面积是,则该球的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设集合(1)若,求;(2)设,若是成立的必要不充分条件,求实数a的取值范围18.(12分)如图,四棱锥中,底面是边长为2的正方形,,,且,为的中点(1)求平面与平面夹角的余弦值;(2)在线段上是否存在点,使得点到平面的距离为?若存在,确定点的位置;若不存在,请说明理由19.(12分)如图1是一张长方形铁片,,,,分别是,中点,,分别在边,上,且,将它卷成一个圆柱的侧面图2,使与重合,与重合.(1)求证:平面;(2)求几何体的体积.20.(12分)已知抛物线的焦点为,直线与抛物线交于,两点,且(1)求抛物线的方程;(2)若,是抛物线上一点,过点的直线与抛物线交于,两点(均与点不重合),设直线,的斜率分别为,,求证:为定值21.(12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.求甲、乙两人所付滑雪费用相同的概率;22.(10分)已知在等差数列中,,(1)求数列的通项公式;(2)若的前n项和为,且,,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由于对数函数的存在,故需要对进行放缩,结合(需证明),可放缩为,利用等号成立可求出,进而得解.【详解】令,,故在上单调递减,在上单调递增,,故,即,当且仅当,等号成立.所以,当且仅当时,等号成立,又,所以,即,所以,又,所以,,故故选:A2、C【解析】根据空间两点间距离公式,结合对称性进行求解即可.【详解】因为点关于原点的对称点为,所以,因此,故选:C3、B【解析】根据方程表示椭圆,且2,再判断必要不充分条件即可.【详解】解:方程表示椭圆满足,解得,且2所以“”是“方程表示椭圆”的必要不充分条件.故选:B4、A【解析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.5、B【解析】求出不等式的等价形式,结合充分条件和必要条件的定义进行判断即可【详解】由得或,由得,因为或推不出,但能推出或成立,所以“”是“”的必要不充分条件,故选:B6、B【解析】根据两直线垂直,列出方程,即可求解.【详解】由题意,直线与直线垂直,可得,解得.故选:B.7、B【解析】根据椭圆的标准方程,确定,计算离心率即可.【详解】由知,,,,即,故选:B8、A【解析】求出向量,的坐标,利用向量数量积坐标表示即可求解.【详解】因为向量,,所以,,因为,所以,解得:,故选:A.9、D【解析】由,得到为递增数列,又由,得到,化简,即可求解.【详解】解:由,得,又,所以,所以,即,所以数列为递增数列,所以,得,即,又由是的前项和,则.故选:D.【点睛】关键点睛:本题考查数列求和问题,关键在于由已知条件得出,运用裂项相消求和法.10、D【解析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a=3,b=4,c=5,,故离心率e,故A正确;由双曲线的性质可知,双曲线线的渐近线方程为y=±x,故B正确;设P(x,y),则P到两渐近线的距离之积为,故C正确;若PF1⊥PF2,则△PF1F2是直角三角形,由勾股定理得,由双曲线的定义可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D错误.故选:D11、D【解析】根据空间向量加法和减法的运算法则,以及向量的数乘运算即可求解.【详解】解:因为在平行六面体中,,,,点是的中点,点是上的点,且,所以,故选:D.12、B【解析】先求与平行且与相切的切线切点,再根据点到直线距离公式得结果.【详解】设与平行的直线与相切,则切线斜率k=1,∵∴,由,得当时,即切点坐标为P(1,0),则点(1,0)到直线的距离就是线上的点到直线的最短距离,∴点(1,0)到直线的距离为:,∴曲线上的点到直线l:的距离的最小值为.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】根据题意,结合条件概率的计算公式,即可求解.【详解】根据题意,事件表示“第3次取单恰好是从1号店取单”,因此;同理故答案为:;.14、【解析】画出示意图,根据图形分析可知点在阴影部分所对的劣弧上,由几何概型可求出.【详解】作出示意图曲线是圆心为原点,半径为2的一个半圆.圆心到直线距离,而点到直线的距离为,故若点到直线的距离不大于,则点在阴影部分所对的劣弧上,由几何概型的概率计算公式知,所求概率为.故答案为:.【点睛】本题考查几何概型的概率计算,属于中档题.15、【解析】由时,,可得,利用累乘法得,从而即可求解.【详解】因为,所以时,,即,化简得,又,所以,检验时也成立,所以,所以,故答案:.16、【解析】设球的半径为r,代入表面积公式,可解得,代入体积公式,即可得答案.【详解】设球的半径为r,则表面积,解得,所以体积,故答案为:【点睛】本题考查已知球的表面积求体积,关键是求出半径,再进行求解,考查基础知识掌握程度,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据不等式的解答求得,当时,求得,结合集合并集的运算,即可求解;(2)由题意得到是的真子集,根据集合间的包含关系,列出不等式组,即可求解.【小问1详解】解:由,解得,即,当时,可得,所以.【小问2详解】解:由集合,因为,且是成立的必要不充分条件,是的真子集,所以且等号不能同时成立,解得,其中当和是满足题意,故实数的取值范围是.18、(1)(2)存在,点为线段的靠近点的三等分点【解析】(1)根据题意证得平面,进而证得平面,得到平面,以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,求得平面和平面的法向量,结合向量的夹角公式,即可求解;(2)设点,求得平面的法向量为,结合向量的距离公式列出方程,求得的值,即可得到答案.【小问1详解】解:因为四边形为正方形,则,,由,,,所以平面,因为平面,所以,又由,,,所以平面,又因为平面,所以,因为且平面,所以平面,由平面,且,不妨以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,如图所示,则,,,,可得,,,设平面的法向量为,则,取,可得,所以,易得平面的法向量为,则,由平面与平面夹角为锐角,所以平面与平面夹角的余弦值【小问2详解】解:设点,可得,,设平面的法向量为,则,取,可得,所以,所以点到平面的距离为,解得,即或因为,所以故当点为线段的靠近点的三等分点时,点到平面的距离为.19、(1)证明见解析.(2).【解析】(1)根据线面垂直的性质和判定可得证;(2)作圆柱的母线,由平面几何知识可得四边形为平行四边形,利用等体积法可求得,由几何体的体积,可求得答案.【小问1详解】证明:∵是直径,∴,∵平面,平面,∴,∵平面,平面,,∴平面;【小问2详解】如图,作圆柱的母线,则,且,∴四边形是平行四边形,∴,且①又依题知,,,为底面圆的四等分点,∴,且②由①②知四边形为平行四边形,得,且,∴,∵到面的距离为,∴,所以几何体的体积.20、(1)(2)证明见解析【解析】(1)联立直线和抛物线方程,根据抛物线定义和焦半径公式得到,根据韦达定理可得到最终结果;(2)代入点坐标可得到参数的值,设直线的方程为,联立该直线和抛物线方程,,代入韦达定理可得到最终结果.【小问1详解】设点,,点,,联立,整理得,,由抛物线的定义知,解得,抛物线的方程为【小问2详解】,为抛物线上一点,,即,设,,,,直线的方程为,由,消去得,,,,即为定值21、【解析】甲、乙两人所付费用相同即为、、,求出相应的概率,利用互斥事件的概率公式,可求出甲、乙两人所付费用相同的概率;【详解】两人所付费用相同,相同费用可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论