版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市南汇中学2026届数学高二上期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.青花瓷是中华陶瓷烧制工艺的珍品,也是中国瓷器的主流品种之一.如图,是一青花瓷花瓶,其外形上下对称,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面.若该花瓶的瓶口直径为瓶身最小直径的2倍,花瓶恰好能放入与其等高的正方体包装箱内,则双曲线的离心率为()A. B.C. D.2.椭圆的()A.焦点在x轴上,长轴长为2 B.焦点在y轴上,长轴长为2C.焦点在x轴上,长轴长为 D.焦点在y轴上,长轴长为3.已知数列满足,,则()A. B.C. D.4.已知椭圆的短轴长和焦距相等,则a的值为()A.1 B.C. D.5.若是等差数列的前项和,,则()A.13 B.39C.45 D.216.甲、乙同时参加某次数学检测,成绩为优秀的概率分别为、,两人的检测成绩互不影响,则两人的检测成绩都为优秀的概率为()A. B.C. D.7.下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则8.在四棱锥中,底面是正方形,为的中点,若,则()A. B.C. D.9.已知椭圆经过点,当该椭圆的四个顶点构成的四边形的周长最小时,其标准方程为()A. B.C. D.10.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤”意思是:“现有一根金杖,长5尺,头部1尺,重4斤;尾部1尺,重2斤;若该金杖从头到尾每一尺重量构成等差数列,其中重量为,则的值为()A.4 B.12C.15 D.1811.已知,则点关于平面的对称点的坐标是()A. B.C. D.12.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的左焦点到直线的距离为________.14.已知数列满足,则的前20项和___________.15.已知数列满足,,则数列的前n项和______16.圆被直线所截得弦的最短长度为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,底面ABCD是边长为2的菱形,,,且,E为PD的中点(1)求证:;(2)求二面角的大小;(3)在侧棱PC上是否存在点F,使得点F到平面AEC的距离为?若存在,求出的值;若不存在,请说明理由18.(12分)在数列中,,且,(1)求的通项公式;(2)求的前n项和的最大值19.(12分)在中,内角所对的边长分别为,是1和的等差中项(1)求角;(2)若的平分线交于点,且,求的面积20.(12分)已知椭圆的左、右顶点坐标分别是,,短轴长等于焦距.(1)求椭圆的方程;(2)若直线与椭圆相交于两点,线段的中点为,求.21.(12分)新型冠状病毒的传染主要是人与人之间进行传播,感染人群年龄大多数是岁以上人群.该病毒进入人体后有潜伏期.潜伏期是指病原体侵入人体至最早出现临床症状的这段时间.潜伏期越长,感染到他人的可能性越高.现对个病例的潜伏期(单位:天)进行调查,统计发现潜伏期平均数为,方差为.如果认为超过天的潜伏期属于“长潜伏期”,按照年龄统计样本,得到下面的列联表:年龄/人数长期潜伏非长期潜伏50岁以上6022050岁及50岁以下4080(1)是否有的把握认为“长期潜伏”与年龄有关;(2)假设潜伏期服从正态分布,其中近似为样本平均数,近似为样本方差.(i)现在很多省市对入境旅客一律要求隔离天,请用概率知识解释其合理性;(ii)以题目中的样本频率估计概率,设个病例中恰有个属于“长期潜伏”的概率是,当为何值时,取得最大值.附:0.10.050.0102.7063.8416.635若,则,,.22.(10分)如图四棱锥P-ABCD中,面PDC⊥面ABCD,∠ABC=∠DCB=,CD=2AB=2BC=2,△PDC是等边三角形.(1)设面PAB面PDC=l,证明:l//平面ABCD;(2)线段PC内是否存在一点E,使面ADE与面ABCD所成角的余弦值为,如果存在,求λ=的值,如果不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由题意作出轴截面,最短直径为2a,根据已知条件点(2a,2a)在双曲线上,代入双曲线的标准方程,结合a,b,c的关系可求得离心率e的值【详解】由题意作出轴截面如图:M点是双曲线与截面正方形的交点之一,设双曲线的方程为:最短瓶口直径为A1A2=2a,则由已知可得M是双曲线上的点,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化简后得,解得故选:C2、B【解析】把椭圆方程化为标准方程可判断焦点位置和求出长轴长.【详解】椭圆化为标准方程为,所以,且,所以椭圆焦点在轴上,,长轴长为.故选:B.3、A【解析】根据递推关系依次求出即可.【详解】,,,,,.故选:A.4、A【解析】由题设及椭圆方程可得,即可求参数a的值.【详解】由题设易知:椭圆参数,即有,可得故选:A5、B【解析】先根据等差数列的通项公式求出,然后根据等差数列的求和公式及等差数列的下标性质求得答案.【详解】设等差数列的公差为d,则,则.故选:B.6、D【解析】利用相互独立事件概率乘法公式直接求解.【详解】甲、乙同时参加某次数学检测,成绩为优秀的概率分别为、,两人的检测成绩互不影响,则两人的检测成绩都为优秀的概率为.故选:D7、D【解析】通过举反列即可得ABC错误,利用不等式性质可判断D【详解】A.当时,,但,故A错;B.当时,,故B错;C.当时,,但,故C错;D.若,则,D正确故选:D8、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.9、A【解析】把点代入椭圆方程得,写出椭圆顶点坐标,计算四边形周长讨论它取最小值时的条件即得解.【详解】依题意得,椭圆的四个顶点为,顺次连接这四个点所得四边形为菱形,其周长为,,当且仅当,即时取“=”,由得a2=12,b2=4,所求标准方程为.故选:A【点睛】给定两个正数和(两个正数倒数和)为定值,求这两个正数倒数和(两个正数和)的最值问题,可借助基本不等式中“1”的妙用解答.10、C【解析】先求出公差,再利用公式可求总重量.【详解】设头部一尺重量为,其后每尺重量依次为,由题设有,,故公差为.故中间一尺的重量为所以这5项和为.故选:C.11、C【解析】根据对称性求得坐标即可.【详解】点关于平面的对称点的坐标是,故选:C12、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据双曲线方程求得左焦点的坐标,利用点到直线的距离公式即可求得结果.【详解】因为双曲线的方程为,设其左焦点的坐标为,故可得,解得,故左焦点的坐标为,则其到直线的距离.故答案为:.14、135【解析】直接利用数列的递推关系式写出相邻四项之和,进而求出数列的和.【详解】数列满足,所以,故,当时,,当时,,,当时,,所以.故答案为:135.15、【解析】先求出,利用裂项相消法求和.【详解】因为数列满足,,所以数列为公差d=2的等差数列,所以,所以所以.故答案为:.16、【解析】首先确定直线所过定点;由圆的方程可确定圆心和半径,进而求得圆心到的距离,由此可知所求最短长度为.【详解】由得:,直线恒过点;,在圆内;又圆的圆心为,半径,圆心到点的距离,所截得弦的最短长度为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)(3)存在;【解析】(1)作出辅助线,证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,用空间向量求解二面角;(3)设出F点坐标,用空间向量的点到平面距离公式进行求解.【小问1详解】证明:连接BD,设BD与AC交于点O,连接PO.因为,所以四棱锥中,底面ABCD是边长为2的菱形,则又,所以平面PBD,因为平面PBD,所以【小问2详解】因为,所以,所以由(1)知平面ABCD,以O为原点,,,的方向为x轴,y轴,z轴正方向,建立空间直角坐标系,则,,,,,,所以,,,设平面AEC的法向量,则,即,令,则平面ACD的法向量,,所以二面角为;【小问3详解】存在点F到平面AEC的距离为,理由如下:由(2)得,,设,则,所以点F到平面AEC的距离,解得,,所以18、(1)(2)40【解析】(1)根据递推关系,判定数列是等差数列,然后求得首项和公差,进而得到通项公式;(2)令,求得,进而根据数列的前项和的意义求得当或5时,有最大值,进而求得和的最大值.【小问1详解】解:∵数列满足,∴,∴是等差数列,设的公差为d,则,即,解得,∴,∴【小问2详解】令,得,解得,所以当或5时,有最大值,且最大值为19、(1);(2)【解析】(1)根据是1和的等差中项得到,再利用正弦定理结合商数关系,两角和与差的三角函数化简得到求解;(2)由和求得b,c的关系,再结合余弦定理求解即可.【详解】(1)由已知得,在中,由正弦定理得,化简得,因为,所以,所以;(2)由正弦定理得,又,即,由余弦定理得,所以,所以【点睛】方法点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到20、(1);(2).【解析】(1)由椭圆顶点可知,又短轴长等于焦距可知,求出,即可写出椭圆方程(2)根据“点差法”可求直线的斜率,写出直线方程,联立椭圆方程可得,,代入弦长公式即可求解.【详解】(1)依题意,解得.故椭圆方程为.(2)设的坐标分别为,,直线的斜率显然存在,设斜率为,则,两式相减得,整理得.因为线段的中点为,所以,所以直线的方程为,联立,得,则,,故.【点睛】本题主要考查了椭圆的标准方程及简单几何性质,“点差法”,弦长公式,属于中档题.21、(1)有;(2)(i)答案见解析;(ii)250.【解析】(1)根据列联表中的数据,利用求得,与临界表值对比下结论;(2)(ⅰ)根据,利用小概率事件判断;(ⅱ)易得一个患者属于“长潜伏期”的概率是,进而得到,然后判断其单调性求解.【详解】(1)依题意有,由于,故有的把握认为“长期潜伏”与年龄有关;(2)(ⅰ)若潜伏期,由,得知潜伏期超过天的概率很低,因此隔离天是合理的;(ⅱ)由于个病例中有个属于长潜伏期,若以样本频率估计概率,一个患者属于“长潜伏期”的概率是,于是,则,,当时,;当时,;∴,.故当时,取得最大值.【点睛】方法点睛:利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式的三个条件:(1)在一次试验中某事件A发生的概率是一个常数p;(2)n次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n次试验中事件A恰好发生了k次的概率22、(1)证明见解析(2)存在【解析】(1)由已知可得∥,再由线面平行的判定可得∥平面,再由线面平行的性质可得∥,再由线面平行的判定可得结论,(2)由已知条件可证得两两垂直,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025孕产期保健及高危孕产妇管理培训班考核试题及答案
- 2025年企业产品销售与渠道管理
- 2026年重庆资源与环境保护职业学院单招职业技能考试模拟试题带答案解析
- 2026年平顶山职业技术学院单招综合素质考试模拟试题带答案解析
- 2025年物联网技术研发工程师资格考试试卷答案
- 2026年重庆工程职业技术学院单招综合素质考试参考题库带答案解析
- 2025年无人机航拍理论试题库(含答案)
- 2026年聊城职业技术学院单招综合素质考试参考题库带答案解析
- 2026年江西电力职业技术学院单招综合素质笔试模拟试题带答案解析
- 2026年郑州西亚斯学院单招职业技能考试参考题库带答案解析
- 大健康行业趋势
- 2025年中远海运集团招聘笔试备考题库(带答案详解)
- REVIT建筑建模知到智慧树期末考试答案题库2025年武汉职业技术学院
- 黄河鲤鱼规模化生态养殖项目可行性研究报告完整立项报告
- (高清版)DG∕TJ 08-2299-2019 型钢混凝土组合桥梁设计标准
- 睑板腺炎的健康宣教
- 慢性阻塞性肺疾病诊治指南课件
- 劳动与社会保障法-002-国开机考复习资料
- 工厂车间流水线承包合同协议书范文
- 客房服务员理论知识考试题及答案
- HG/T 6262-2024 再生磷酸铁(正式版)
评论
0/150
提交评论