版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省红河县一中2026届高一上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数f(x)=,若f(a)=f(b)=f(c)且a<b<c,则ab+bc+ac的取值范围为()A. B.C. D.2.已知是定义在上的偶函数,且在上单调递减,若,,,则、、的大小关系为()A. B.C. D.3.非零向量,,若点关于所在直线的对称点为,则向量为A. B.C. D.4.“x=”是“sinx=”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知函数f(x)是偶函数,且f(x)在上是增函数,若,则不等式的解集为()A.{x|x>2} B.C.{或x>2} D.{或x>2}6.已知函数,则函数()A. B.C. D.7.若方程的两实根中一个小于,另一个大于,则的取值范围是()A. B.C. D.8.下列说法中,错误的是()A.若,,则 B.若,则C.若,,则 D.若,,则9.在平面直角坐标系中,以为圆心的圆与轴和轴分别相切于两点,点分别在线段上,若,与圆相切,则的最小值为A. B.C. D.10.将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,则函数在上的最大值和最小值分别为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义域为R的函数,满足,则实数a的取值范围是______12.已知函数f(x)的定义域是[-1,1],则函数f(log2x)的定义域为____13.已知函数,,若对任意,存在,使得,则实数的取值范围是__________14.不等式的解集是_____________________15.函数在一个周期内图象如图所示,此函数的解析式为___________.16.已知函数在区间是单调递增函数,则实数的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是定义在上的奇函数,,当时的解析式为.(1)写出在上的解析式;(2)求在上的最值.18.对于函数,若在其定义域内存在实数,,使得成立,则称是“跃点”函数,并称是函数的1个“跃点”(1)求证:函数在上是“1跃点”函数;(2)若函数在上存在2个“1跃点”,求实数的取值范围;(3)是否同时存在实数和正整数使得函数在上有2022个“跃点”?若存在,请求出和满足的条件;若不存在,请说明理由19.已知函数(Ⅰ)当时,求在区间上的值域;(Ⅱ)当时,是否存在这样的实数a,使方程在区间内有且只有一个根?若存在,求出a的取值范围;若不存在,请说明理由20.在三棱锥中,平面,,,,分别是,的中点,,分别是,的中点.(1)求证:平面.(2)求证:平面平面.21.求值:(1);(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】画出函数的图象,根据,,互不相等,且(a)(b)(c),我们令,我们易根据对数的运算性质,及,,的取值范围得到的取值范围【详解】解:作出函数的图象如图,不妨设,,,,,,由图象可知,,则,解得,,则,解得,,的取值范围为故选.【点睛】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力,解答的关键是图象法的应用,即利用函数的图象交点研究方程的根的问题,属于中档题.2、D【解析】分析可知函数在上为增函数,比较、、的大小,结合函数的单调性与偶函数的性质可得出结论.【详解】因为偶函数在上为减函数,则该函数在上为增函数,,则,即,,,所以,,故,即.故选:D.3、A【解析】如图由题意点B关于所在直线的对称点为B1,所以∠BOA=∠B1OA,所以又由平行四边形法则知:,且向量的方向与向量的方向相同,由数量积的概念向量在向量方向上的投影是OM=,设与向量方向相同的单位向量为:,所以向量=2=2=,所以=.故选A.点睛:本题利用平行四边形法则表示和向量,因为对称,所以借助数量积定义中的投影及单位向量即可表示出和向量,解题时要善于借助图像特征体现向量的工具作用.4、A【解析】根据充分不必要条件的定义可得答案.【详解】当时,成立;而时得(),故选:A【点睛】本题考查充分不必要条件判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含5、C【解析】利用函数的奇偶性和单调性将不等式等价为,进而可求得结果.详解】依题意,不等式,又在上是增函数,所以,即或,解得或.故选:C.6、C【解析】根据分段函数的定义域先求出,再根据,根据定义域,结合,即可求出结果.【详解】由题意可知,,所以.故选:C.7、A【解析】设,根据二次函数零点分布可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】由可得,令,由已知可得,解得,故选:A.8、A【解析】逐一检验,对A,取,判断可知;对B,,可知;对C,利用作差即可判断;对D根据不等式同向可加性可知结果.【详解】对A,取,所以,故错误;对B,由,,所以,故正确;对C,,由,,所以,所以,故正确;对D,由,所以,又,所以故选:A9、D【解析】因为为圆心的圆与轴和轴分别相切于两点,点分别在线段上,若,与圆相切,设切点为,所以,设,则,,故选D.考点:1、圆的几何性质;2、数形结合思想及三角函数求最值【方法点睛】本题主要考查圆的几何性质、数形结合思想及三角函数求最值,属于难题.求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②三角函数法:将问题转化为三角函数,利用三角函数的有界性求最值;③不等式法:借助于基本不等式求函数的值域,用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图像法:画出函数图像,根据图像的最高和最低点求最值,本题主要应用方法②求的最小值的10、A【解析】先化简f(x),再结合函数图象的伸缩变换,得到函数y=g(x)的解析式,进而根据正弦型函数最值的求法,求出函数的最大值与最小值【详解】∵函数,∴g(x)∵x∈∴4x∈∴当4x时,g(x)取最大值1;当4x时,g(x)取最小值故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先判断函数奇偶性,再判断函数的单调性,从而把条件不等式转化为简单不等式.【详解】由函数定义域为R,且,可知函数为奇函数.,令则,令则即在定义域R上单调递增,又,由此可知,当时,即,函数即为减函数;当时,即,函数即为增函数,故函数在R上的最小值为,可知函数在定义域为R上为增函数.根据以上两个性质,不等式可化为,不等式等价于即解之得或故答案为12、【解析】根据给定条件列出使函数f(log2x)有意义的不等式组,再求出其解集即可.【详解】因函数f(x)的定义域是[-1,1],则在f(log2x)中,必有,解不等式可得:,即,所以函数f(log2x)的定义域为.故答案为:13、【解析】若任意,存在,使得成立,只需,∵,在该区间单调递增,即,又∵,在该区间单调递减,即,则,,14、【解析】利用指数函数的性质即可求解.【详解】,即,故答案为:.15、【解析】根据所给的图象,可得到,周期的值,进而得到,根据函数的图象过点可求出的值,得到三角函数的解析式【详解】由图象可知,,,由,三角函数的解析式是函数的图象过,,把点的坐标代入三角函数的解析式,,,又,,三角函数的解析式是.故答案为:.16、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)最大值为0,最小值为【解析】(1)先求得参数,再依据奇函数性质即可求得在上的解析式;(2)转化为二次函数在给定区间求值域即可解决.【小问1详解】因为是定义在上的奇函数,所以,即,由,得,由,解得,则当时,函数解析式为设,则,,即当时,【小问2详解】当时,,所以当,即时,的最大值为0,当,即时,的最小值为.18、(1)证明见详解(2)(3)存在,或或【解析】(1)将要证明问题转化为方程在上有解,构造函数转化为函数零点问题,结合零点存在性定理可证;(2)原问题等价于方程在由两个根,然后构造二次函数,转化为零点分布问题可解;(3)将问题转化为方程在上有2022个实数根,再转化为两个函数交点个数问题,然后可解.【小问1详解】因为整理得,令,因为,所以在区间有零点,即存在,使得,即存在,使得,所以,函数在上是“1跃点”函数【小问2详解】函数在上存在2个“1跃点”方程在上有两个实数根,即在上有两个实数根,令,则解得或,所以的取值范围是【小问3详解】由,得,即因为函数在上有2022个“跃点”,所以方程在上有2022个解,即函数与的图象有2022个交点.所以或或即或或19、(Ⅰ);(Ⅱ)存在,.【解析】(Ⅰ)先把代入解析式,再求对称轴,进而得到函数的单调性,即可求出值域;(Ⅱ)函数在区间内有且只有一个零点,转化为函数和的图象在内有唯一交点,根据中是否为零,分类讨论,结合函数的性质,即可求解.【详解】(Ⅰ)当时,,对称轴为:,所以函数在区间单调递减,在区间单调递增;则,所以在区间上的值域为;(Ⅱ)由,令,可得,即,令,,,函数在区间内有且只有一个零点,等价于两个函数与的图象在内有唯一交点;①当时,在上递减,在上递增,而,所以函数与的图象在内有唯一交点.②当时,图象开口向下,对称轴为,在上递减,在上递增,与的图象在内有唯一交点,当且仅当,即,解得,所以.③当时,图象开口向上,对称轴为,在上递减,在上递增,与的图象在内有唯一交点,,即,解得,所以.综上,存在实数,使函数于在区间内有且只有一个点.【点睛】关键点睛:本题主要考查了求一元二次函数的值域问题,以及函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数图象的交点个数问题,结合函数的性质求解是解答的关键,着重考查转化思想,以及推理与运算能力.20、(1)见解析;(2)见解析.【解析】(1)根据线面平行的判定定理可证明平面;(2)根据面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 论文经济学解析
- 校园安全课件博客
- 校园安全课件2016
- 防滑坡安全课件及教案
- 课件圆形翻转后变色
- 心脏支架产品设计
- 艺术品真伪鉴定免责条款服务合同
- 个人税收递延型商业养老保险
- 汽修厂安全消防培训课件
- 校园安全培训结尾总结课件
- 深圳市南山区雨污分流施工报价表
- 人力资源服务机构管理制度
- 北师大版六年级上册数学错题资源
- 联合利华中国公司销售运作手册
- GB/T 42287-2022高电压试验技术电磁和声学法测量局部放电
- 电子版个人简历简单模板
- 压覆矿产资源查询申请表
- GB/T 9115-2010对焊钢制管法兰
- GB/T 6495.1-1996光伏器件第1部分:光伏电流-电压特性的测量
- GB/T 26160-2010中国未成年人头面部尺寸
- 《凝聚态物理学新论》配套教学课件
评论
0/150
提交评论