版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届宁夏银川市一中数学高一上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图像必经过点A.(0,2) B.(4,3)C.(4,2) D.(2,3)2.,是两个平面,,是两条直线,则下列命题中错误的是()A.如果,,,那么B.如果,,那么C.如果,,,那么D.如果,,,那么3.已知函数,若函数有四个零点,则的取值范围是A. B.C. D.4.若,,则()A. B.C. D.5.已知函数,若,,,则,,的大小关系为A. B.C. D.6.函数在区间上的最小值是A. B.0C. D.27.设集合,若,则实数()A.0 B.1C. D.28.已知是球的直径上一点,,平面,为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.9.函数单调递增区间为A. B.C D.10.已知,则的最小值为()A.2 B.3C.4 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.在正方体中,则异面直线与的夹角为_________12.函数(且)的图象必经过点___________.13.设函数,则____________14.函数,则________15.已知y=f(x)是奇函数,当x≥0时,,则f(-8)的值是____.16.在正方体中,直线与平面所成角的正弦值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,当时,求函数在上的最大值;对任意的,,都有成立,求实数a的取值范围18.已知直线(1)求与垂直,且与两坐标轴围成的三角形面积为4直线方程:(2)已知圆心为,且与直线相切求圆的方程;19.已知的部分图象如图.(1)求函数的解析式;(2)求函数在上的单调增区间.20.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,平面PCD⊥底面ABCD,且BC=2,,(1)证明:(2)若,求四棱锥的体积21.已知直线l过点和直线:平行,圆O的方程为,直线l与圆O交于B,C两点.(1)求直线l的方程;(2)求直线l被圆O所截得的弦长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据指数型函数的性质,即可确定其定点.【详解】令得,所以,因此函数过点(4,3).故选B【点睛】本题主要考查函数恒过定点的问题,熟记指数函数的性质即可,属于基础题型.2、D【解析】A.由面面垂直的判定定理判断;B.由面面平行的性质定理判断;C.由线面平行的性质定理判断;D.由平面与平面的位置关系判断;【详解】A.如果,,,由面面垂直的判定定理得,故正确;B.如果,,由面面平行的性质定理得,故正确;C.如果,,,由线面平行的性质定理得,故正确;D如果,,,那么相交或平行,故错误;故选:D【点睛】本题主要考查空间中线线、线面、面面间的位置关系,还考查了理解辨析和逻辑推理的能力,属于中档题.3、B【解析】不妨设,的图像如图所示,则,,其中,故,也就是,则,因,故.故选:B.【点睛】函数有四个不同零点可以转化为的图像与动直线有四个不同的交点,注意函数的图像有局部对称性,而且还是倒数关系.4、C【解析】由题可得,从而可求出,即得.【详解】∵所以,又因为,,所以,即,所以,又因为,所以,故选:C5、C【解析】根据函数解析式先判断函数的单调性和奇偶性,然后根据指数和对数的运算法则进行化简即可【详解】∵f(x)=x3,∴函数f(x)是奇函数,且函数为增函数,a=﹣f(log3)=﹣f(﹣log310)=f(log310),则2<log39.1<log310,20.9<2,即20.9<log39.1<log310,则f(209)<f(log39.1)<f(log310),即c<b<a,故选C【点睛】本题主要考查函数值的大小的比较,根据函数解析式判断函数的单调性和奇偶性是解决本题的关键6、A【解析】函数,可得的对称轴为,利用单调性可得结果【详解】函数,其对称轴为,在区间内部,因为抛物线的图象开口向上,所以当时,在区间上取得最小值,其最小值为,故选A【点睛】本题考查二次函数的最值,注意分析的对称轴,属于基础题.若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域.7、B【解析】可根据已知条件,先求解出的值,然后分别带入集合A和集合B中去验证是否满足条件,即可完成求解.【详解】集合,,所以,①当时,集合,此时,成立;②当时,集合,此时,不满足题意,排除.故选:B.8、C【解析】设球的半径为,根据题意知球心到平面的距离,截球所得截面圆的半径为1,由,截面圆半径,球半径构成直角三角形,利用勾股定理,即可求出球半径,进而求出球的表面积.【详解】如图所示,设球的半径为,因为,所以,又因为截球所得截面的面积为,所以,在中,有,即,所以,故球的表面积,故选:C.【点睛】本题主要考查球的基本应用,答题关键点在于明确球心到截面的距离,截面圆半径,球半径三者可构成直角三角形,进而满足勾股定理.9、A【解析】,所以.故选A10、A【解析】由可得,将整理为,再利用基本不等式即可求解.【详解】因为,所以,所以,当且仅当,即时取等号,所以的最小值为.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先证明,可得或其补角即为异面直线与所成的角,连接,在中求即可.【详解】在正方体中,,所以,所以四边形是平行四边形,所以,所以或其补角即为异面直线与所成的角,连接,由为正方体可得是等边三角形,所以.故答案为:【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角12、【解析】令得,把代入函数的解析式得,即得解.【详解】解:因为函数,其中,,令得,把代入函数的解析式得,所以函数(且)的图像必经过点的坐标为.故答案为:13、2【解析】利用分段函数由里及外逐步求解函数的值即可.【详解】解:由已知,所以,故答案为:.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.14、【解析】利用函数的解析式可计算得出的值.【详解】由已知条件可得.故答案为:.15、【解析】先求,再根据奇函数求【详解】,因为为奇函数,所以故答案为:【点睛】本题考查根据奇函数性质求函数值,考查基本分析求解能力,属基础题.16、【解析】连接AC交BD于O点,设交面于点E,连接OE,则角CEO就是所求的线面角,因为AC垂直于BD,AC垂直于,故AC垂直于面.设正方体的边长为2,则OC=,OE=1,CE,此时正弦值为故答案为.点睛:求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;高二时还会学到空间向量法,可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.面面角一般是要么定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,要么建系来做.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3;(2).【解析】(1)由,得出函数的解析式,根据函数图象,得函数的单调性,即可得到函数在上的最大值;(2)对任意的,都有成立,等价于对任意的,成立,再对进行讨论,即可求出实数的取值范围.试题解析:(1)当时,,结合图像可知,函数在上是增函数,在上是减函数,在上是增函数,又,,所以函数在上的最大值为3.(2),由题意得:成立.①时,,函数在上是增函数,所以,,从而,解得,故.②因为,由,得:,解得:或(舍去)当时,,此时,,从而成立,故当时,,此时,,从而成立,故,综上所述:.点睛:(1)对于形如,对任意的,恒成立的问题,可转化为恒成立的问题,然后根据函数的单调性将函数不等式转化为一般不等式处理;(2)解决不等式的恒成立问题时,要转化成函数的最值问题求解,解题时可选用分离参数的方法,若参数无法分离,则可利用方程根的分布的方法解决,解题时注意区间端点值能否取等号18、(1)或;(2)【解析】分析:(1)由题意,设所求的直线方程为,分离令和,求得在坐标轴上的截距,利用三角形的面积公式,求得的值,即可求解;(2)设圆的半径为,因为圆与直线相切,列出方程,求得半径,即可得到圆的标准方程.详解:(1)∵所求的直线与直线垂直,∴设所求的直线方程为,∵令,得;令,得.∵所求的直线与两坐标轴围成的三角形面积为4∴,∴∴所求的直线方程为或(2)设圆的半径为,∵圆与直线相切∴∴所求的圆的方程为点睛:本题主要考查了直线方程的求解,以及直线与圆的位置关系的应用,着重考查了推理与计算能力,属于基础题.19、(1);(2)和.【解析】(1)由图知:且可求,再由,结合已知求,写出解析式即可.(2)由正弦函数的单调性,知上递增,再结合给定区间,讨论值确定其增区间.【详解】(1)由图知:且,∴.又,即,而,∴.综上,.(2)∵,∴.当时,;当时,,又,∴函数在上的单调增区间为和.20、(1)证明见解析;(2)8.【解析】(1)由平行四边形的性质及勾股定理可得,再由面面垂直的性质有BC⊥面PCD,根据线面垂直的性质即可证结论.(2)取CD的中点E,连接PE,易得,由面面垂直的性质有PE⊥底面ABCD,即PE是四棱锥的高,应用棱锥的体积公式求体积即可.【小问1详解】在平行四边形ABCD中因为,即,所以因为面PCD⊥面ABCD,且面PCD面ABCD=CD,面PCD,所以BC⊥面PCD,又PD平面PCD,所以【小问2详解】如图,取CD的中点E,连接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年绿色电力产供销一体化的经济分析
- 2026年桥梁工程项目管理的最佳实践
- 2026春招:小学教师面试题及答案
- 2026年桥梁抗震设计中的柔性结构应用
- 贴砖安全质量培训课件
- 货运驾驶员安全培训考核课件
- 货车尾板安全培训课件
- 医疗物联网在临床应用中的实践
- 货梯安全使用培训内容课件
- 2026年汉中职业技术学院单招职业技能笔试模拟试题带答案解析
- 广东省深圳市南山区2023-2024学年四年级上学期数学期末教学质量监测试卷
- 【MOOC】生物化学与分子生物学-华中科技大学 中国大学慕课MOOC答案
- 地下室顶板堆载及回顶方案
- 广东省2024年修订医疗服务价格项目表
- 药品经营质量管理规范
- (人教2024版)数学四年级上册第8单元《数学广角-优化》大单元教学课件
- 临床生物化学检验练习题库(含答案)
- G -B- 15607-2023 涂装作业安全规程 粉末静电喷涂工艺安全(正式版)
- (正式版)SHT 3229-2024 石油化工钢制空冷式热交换器技术规范
- 2018年4月自考00265西方法律思想史试题及答案含解析
- 小红书创业计划书
评论
0/150
提交评论