版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕尾市陆河外国语学校2026届高二上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是空间的一个基底,若,,若,则()A B.C.3 D.2.在空间直角坐标系中,点关于平面的对称点为,则()A.-4 B.-10C.4 D.103.△ABC的两个顶点坐标A(-4,0),B(4,0),它的周长是18,则顶点C的轨迹方程是()A. B.(y≠0)C. D.4.已知、,直线,,且,则的最小值为()A. B.C. D.5.已知空间向量,,且,则的值为()A. B.C. D.6.记等比数列的前项和为,若,,则()A.12 B.18C.21 D.277.函数的导数记为,则等于()A. B.C. D.8.以原点为对称中心的椭圆焦点分别在轴,轴,离心率分别为,直线交所得的弦中点分别为,,若,,则直线的斜率为()A. B.C. D.9.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”10.原点到直线的距离的最大值为()A. B.C. D.11.已知点到直线:的距离为1,则等于()A. B.C. D.12.若数列1,a,b,c,9是等比数列,则实数b的值为()A.5 B.C.3 D.3或二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点到准线的距离为,则抛物线的标准方程为___________.(写出一个即可)14.设函数,,若存在,成立,则实数的取值范围为__________.15.已知直线与垂直,则m的值为______16.已知函数在处有极值2,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:,经过的直线与抛物线C交于A,B两点(1)求的值(其中为坐标原点);(2)设F为抛物线C的焦点,直线为抛物线C的准线,直线是抛物线C的通径所在的直线,过C上一点P()()作直线与抛物线相切,若直线与直线相交于点M,与直线相交于点N,证明:点P在抛物线C上移动时,恒为定值,并求出此定值18.(12分)已知单调递增的等比数列满足:,且是,的等差中项(1)求数列的通项公式;(2)若,,求19.(12分)已知圆,点.(1)若,半径为的圆过点,且与圆相外切,求圆的方程;(2)若过点的两条直线被圆截得的弦长均为,且与轴分别交于点、,,求.20.(12分)已知数列,,,且,其中为常数(1)证明:;(2)是否存在,使得为等差数列?并说明理由21.(12分)已知双曲线的左,右焦点为,离心率为.(1)求双曲线C的渐近线方程;(2)过作斜率为k的直线l分别交双曲线的两条渐近线于A,B两点,若,求k的值.22.(10分)如图,在四棱锥中,底面ABCD是边长为2的正方形,为正三角形,且侧面底面ABCD,(1)求证:平面ACM;(2)求平面MBC与平面DBC的夹角的大小
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因为,所以存在实数,使,所以,所以,所以,得,,所以,故选:C2、A【解析】根据关于平面对称的点的规律:横坐标、纵坐标保持不变,竖坐标变为它的相反数,即可求出点关于平面的对称点的坐标,再利用向量的坐标运算求.【详解】解:由题意,关于平面对称的点横坐标、纵坐标保持不变,竖坐标变为它的相反数,从而有点关于对称的点的坐标为(2,−1,-3).故选:A【点睛】本题以空间直角坐标系为载体,考查点关于面的对称,考查数量积的坐标运算,属于基础题3、D【解析】根据三角形的周长得出,再由椭圆的定义得顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,可求得顶点C的轨迹方程.【详解】因为,所以,所以顶点C的轨迹为以A,B为焦点的椭圆,去掉A,B,C共线的情况,即,所以顶点C的轨迹方程是,故选:D.【点睛】本题考查椭圆的定义,由定义求得动点的轨迹方程,求解时,注意去掉不满足的点,属于基础题.4、D【解析】先由,可得,变形得,所以,化简后利用基本不等式求解即可【详解】因为、,直线,,且,所以,即,所以,所以,所以,当且仅当,即时,取等号,所以的最小值为,故选:D5、B【解析】根据向量垂直得,即可求出的值.【详解】.故选:B.6、C【解析】根据等比数列的性质,可知等比数列的公比,所以成等比数列,根据等比的中项性质即可求出结果.【详解】因为为等比数列的前项和,且,,易知等比数列的公比,所以成等比数列所以,所以,解得.故选:C7、D【解析】求导后代入即可.【详解】,.故选:D.8、A【解析】分类讨论直线的斜率存在与不存在两种情况,联立直线与曲线方程,再根据,求解.【详解】设椭圆的方程分别为,,由可知,直线的斜率一定存在,故设直线的方程为.联立得,故,;联立得,则,.因为,所以,所以.又,所以,所以,所以,.故选:A.【点睛】此题利用设而不求的方法,找出、、、之间的关系,化简即可得到的值.此题的难点在于计算量较大,且容易计算出错.9、C【解析】结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.10、C【解析】求出直线过的定点,当时,原点到直线距离最大,则可求出原点到直线距离的最大值;【详解】因为可化为,所以直线过直线与直线交点,联立可得所以直线过定点,当时,原点到直线距离最大,最大距离即为,此时最大值为,故选:C.11、D【解析】利用点到直线的距离公式,即可求得参数的值.【详解】因为点到直线:的距离为1,故可得,整理得,解得.故选:.12、C【解析】根据等比数列的定义,利用等比数列的通项公式求解【详解】解:设该等比数列公比为q,∵数列1,a,b,c,9是等比数列,∴,,∴,故,解得,∴故选:C二、填空题:本题共4小题,每小题5分,共20分。13、(答案不唯一)【解析】设出抛物线方程,根据题意即可得出.【详解】设抛物线的方程为,根据题意可得,所以抛物线的标准方程为.故答案为:(答案不唯一).14、【解析】由不等式分离参数,令,则求即可【详解】由,得,令,则当时,;当时,;所以在上单调递减,在上单调递增,故由于存在,成立,则故答案为:15、0或-9##-9或0【解析】根据给定条件利用两直线互相垂直的性质列式计算即得.【详解】因直线与垂直,则有,解得或,所以m的值为0或-9.故答案为:0或-916、6【解析】根据函数在处有极值2,可得,解方程组即可得解.【详解】解:,因为函数在处有极值2,所以,即,解得,则,故当时,,当时,,所以函数在处有极大值,所以,所以.故答案为:6.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析,定值为【解析】(1)设出直线的方程并与抛物线方程联立,结合根与系数关系求得.(2)求得过点的抛物线的切线方程,由此求得两点的坐标,通过化简来证得为定值,并求得定值.【小问1详解】依题意可知直线的斜率不为零,设直线的方程为,设,,消去并化简得,所以,所以.小问2详解】抛物线方程为,焦点坐标为,准线,通径所在直线,在抛物线上,且,所以过点的抛物线的切线的斜率存在且不为零,设过点的切线方程为,由消去并化简得,,将代入上式并化简得,解得,所以切线方程为,令得,令得,,将代入上式并化简得,所以为定值,且定值为.18、(1);(2)【解析】(1)将已知条件整理变形为等比数列的首项和公比来表示,解方程组得到基本量,可得到通项公式(2)化简通项得,根据特点求和时采用错位相减法求解试题解析:(1)设等比数列的首项为,公比为,依题意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又单调递增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考点:1.等比数列通项公式;2.错位相减求和19、(1)或(2)【解析】(1)设圆心,根据已知条件可得出关于、的方程组,解出、的值,即可得出圆的方程;(2)分析可知直线、的斜率存在,设过点且斜率存在的直线的方程为,即,利用勾股定理可得出,可知直线、的斜率、是关于的二次方程的两根,求出、的坐标,结合韦达定理可求得的值.【小问1详解】解:设圆心,圆的圆心为,由题意可得,解得或,因此,圆的方程为或.【小问2详解】解:若过点的直线斜率不存在,则该直线的方程为,圆心到直线的距离为,不合乎题意.设过点且斜率存在的直线的方程为,即,由题意可得,整理可得,设直线、的斜率分别为、,则、为关于的二次方程的两根,,由韦达定理可得,,在直线的方程中,令,可得,即点在直线的方程中,令,可得,即点,所以,,解得.20、(1)证明见解析(2)存在;理由见解析【解析】(1)由得两式相减可得答案;(2)利用得,可得,是首项为1,公差为4的等差数列,是首项为3,公差为4的等差数列,因此存在【小问1详解】由题设,,,两式相减得,,由于,所以【小问2详解】由题设,,,可得,由(1)知,.令,解得,故,由此可得,是首项为1,公差为4的等差数列,;又,同理,是首项为3,公差为4的等差数列,所以,所以.因此存在,使得为等差数列21、(1)(2)【解析】(1)由离心率可得双曲线的渐近线方程;(2)设,则的中点为,由,可得,然后的方程与双曲线的渐近线方程联立,利用韦达定理可得答案.【小问1详解】设,则,又,所以,得,所以双曲线的渐近线方程为.【小问2详解】由已知直线的倾斜角不是直角,,设,则的中点为,,由,可知,所以,即,因为的方程为,双曲线的渐近线方程可写为,由消去y,得,所以,,所以,因为,所以,即.22、(1)证明见解析(2)30°【解析】(1)连接BD,借助三角形中位线可证;(2)建立空间直角坐标系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学伦理学核心议题
- 医疗信息化在医疗服务评价中的应用
- 医疗信息化与医疗安全体系建设
- 标准化工作培训
- 医院公共卫生科主任谈公共卫生事件应对与疾病预防
- 养老院老人入住通知制度
- 医院内部绩效考核体系改进
- 医疗内部信息安全管理与合规性检查
- 医疗设备安全性与伦理考量
- 核酸实验室安全柜课件
- 2026年广西贵港市华盛集团新桥农工商有限责任公司招聘备考题库及答案详解1套
- 陕西能源职业技术学院2026年教师公开招聘备考题库完整答案详解
- 绿化苗木种植合同范本
- 2026年辽宁省沈阳市单招职业倾向性测试题库及参考答案详解一套
- 冶金原理李洪桂课件
- GB/T 1301-2025凿岩钎杆用中空钢
- 粮油产品授权书
- 责任督学培训课件
- 关于安吉物流市场的调查报告
- 抑郁病诊断证明书
- 历史时空观念的教学与评价
评论
0/150
提交评论