版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市一中、湖南师大附中2026届高二上数学期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,为的导数,则()A.-1 B.1C. D.2.已知x>0、y>0,且1,若恒成立,则实数m的取值范围为()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)3.等差数列中,,,则当取最大值时,的值为A.6 B.7C.6或7 D.不存在4.已知函数的值域为,则实数的取值范围是()A. B.C. D.5.某中学的“希望工程”募捐小组暑假期间走上街头进行了一次募捐活动,共收到捐款1200元.他们第1天只得到10元,之后采取了积极措施,从第2天起,每一天收到的捐款都比前一天多10元.这次募捐活动一共进行的天数为()A.13 B.14C.15 D.166.已知双曲线的离心率为,左焦点为F,实轴右端点为A,虚轴上端点为B,则为()A.直角三角形 B.钝角三角形C.等腰三角形 D.锐角三角形7.已知椭圆的一个焦点坐标为,则的值为()A. B.C. D.8.已知双曲线的左右焦点分别是和,点关于渐近线的对称点恰好落在圆上,则双曲线的离心率为()A. B.2C. D.39.已知空间直角坐标系中的点,,,则点P到直线AB的距离为()A. B.C. D.10.已知圆,圆相交于P,Q两点,其中,分别为圆和圆的圆心.则四边形的面积为()A.3 B.4C.6 D.11.试在抛物线上求一点,使其到焦点的距离与到的距离之和最小,则该点坐标为A. B.C. D.12.命题“,”的否定为()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为________14.抛物线的焦点到准线的距离等于__________.15.若直线:x-2y+1=0与直线:2x+my-1=0相互垂直,则实数m的值为________.16.等比数列的前项和为,则的值为_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正方体中,E为的中点(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值18.(12分)设数列的前项和为,已知,且.(1)证明:数列为等比数列;(2)若,是否存在正整数,使得对任意恒成立?若存在、求的值;若不存在,说明理由.19.(12分)已知圆C:x2+y2+2ax﹣3=0,且圆C上存在两点关于直线3x﹣2y﹣3=0对称.(1)求圆C的半径r;(2)若直线l过点A(2,),且与圆C交于MN,两点,|MN|=2,求直线l的方程.20.(12分)已知函数为常数,函数.(1)讨论函数的单调性;(2)若函数的图象与直线相切,求实数的值;(3)当时,在上有两个极值点且恒成立,求实数的取值范围.21.(12分)已知函数的图象在点P(0,f(0))处的切线方程是(1)求a、b的值;(2)求函数的极值.22.(10分)(1)已知双曲线的离心率为2,求E的渐近线方程;(2)已知F是抛物线的焦点,是C上一点,且,求C的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由导数的乘法法则救是导函数后可得结论【详解】解:由题意,,所以.故选:B2、B【解析】应用基本不等式“1”的代换求的最小值,注意等号成立条件,再根据题设不等式恒成立有,解一元二次不等式求解集即可.【详解】由题设,,当且仅当时等号成立,∴要使恒成立,只需,故,∴.故选:B.3、C【解析】设等差数列的公差为∵∴∴∴∵∴当取最大值时,的值为或故选C4、D【解析】求出函数在时值的集合,函数在时值的集合,再由已知并借助集合包含关系即可作答.【详解】当时,在上单调递增,,,则在上值的集合是,当时,,,当时,,当时,,即在上单调递减,在上单调递增,,,则在上值的集合为,因函数的值域为,于是得,则,解得,所以实数的取值范围是.故选:D5、C【解析】由题意可得募捐构成了一个以10元为首项,以10元为公差的等差数列,设共募捐了天,然后建立关于的方程,求出即可【详解】由题意可得,第一天募捐10元,第二天募捐20元,募捐构成了一个以10元为首项,以10元为公差的等差数列,根据题意,设共募捐了天,则,解得或(舍去),所以,故选:6、A【解析】根据三边的关系即可求出【详解】因,所以,而,,,所以,即,所以为直角三角形故选:A7、B【解析】根据题意得到得到答案.【详解】椭圆焦点在轴上,且,故.故选:B.8、B【解析】首先求出F1到渐近线的距离,利用F1关于渐近线的对称点恰落在圆上,可得直角三角形,利用勾股定理得到关于ac的齐次式,即可求出双曲线的离心率【详解】由题意可设,则到渐近线的距离为.设关于渐近线的对称点为M,F1M与渐近线交于A,∴MF1=2b,A为F1M的中点.又O是F1P的中点,∴OA∥F2M,∴为直角,所以△为直角三角形,由勾股定理得:,所以,所以,所以离心率故选:B.9、D【解析】由向量在向量上的投影及勾股定理即可求.【详解】,0,,,1,,,,,,在上的投影为,则点到直线的距离为.故选:D10、A【解析】求得,由此求得四边形的面积.【详解】圆的圆心为,半径;圆的圆心为,所以,由、两式相减并化简得,即直线的方程为,到直线的距离为,所以,所以四边形的面积为.故选:A11、A【解析】由题意得抛物线的焦点为,准线方程为过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时故点的纵坐标为1,所以横坐标.即点P的坐标为.选A点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上的点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决12、A【解析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“,”是全称量词命题,所以其否定是存在量词命题,即为,,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、相交【解析】由题意知,两圆的圆心分别为(-2,0),(2,1),故两圆的圆心距离为,两圆的半径之差为1,半径之和为5,而1<<5,所以两圆的位置关系为相交14、【解析】先将抛物线方程,转化为标准方程,求得焦点坐标,准线方程即可.【详解】因为抛物线方程是,转化为标准方程得:,所以抛物线开口方向向右,焦点坐标准线方程为:,所以焦点到准线的距离等于.故答案为:【点睛】本题主要考查抛物线的标准方程,还考查了理解辨析的能力,属于基础题.15、1【解析】由两条直线垂直可知,进而解得答案即可.【详解】因为两条直线垂直,所以.故答案为:1.16、【解析】根据等比数列前项和公式的特点列方程,解方程求得的值.【详解】由于等比数列前项和,本题中,故.故填:.【点睛】本小题主要考查等比数列前项和公式的特点,考查观察与思考的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;也可利用空间向量计算证明;(Ⅱ)可以将平面扩展,将线面角转化,利用几何方法作出线面角,然后计算;也可以建立空间直角坐标系,利用空间向量计算求解.【详解】(Ⅰ)[方法一]:几何法如下图所示:在正方体中,且,且,且,所以,四边形为平行四边形,则,平面,平面,平面;[方法二]:空间向量坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,,,设平面的法向量为,由,得,令,则,,则.又∵向量,,又平面,平面;(Ⅱ)[方法一]:几何法延长到,使得,连接,交于,又∵,∴四边形为平行四边形,∴,又∵,∴,所以平面即平面,连接,作,垂足为,连接,∵平面,平面,∴,又∵,∴直线平面,又∵直线平面,∴平面平面,∴在平面中的射影在直线上,∴直线为直线在平面中的射影,∠为直线与平面所成的角,根据直线直线,可知∠为直线与平面所成的角.设正方体的棱长为2,则,,∴,∴,∴,即直线与平面所成角的正弦值为.[方法二]:向量法接续(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直线与平面所成角的正弦值为.[方法三]:几何法+体积法如图,设的中点为F,延长,易证三线交于一点P因为,所以直线与平面所成的角,即直线与平面所成的角设正方体的棱长为2,在中,易得,可得由,得,整理得所以所以直线与平面所成角的正弦值为[方法四]:纯体积法设正方体的棱长为2,点到平面的距离为h,在中,,,所以,易得由,得,解得,设直线与平面所成的角为,所以【整体点评】(Ⅰ)的方法一使用线面平行的判定定理证明,方法二使用空间向量坐标运算进行证明;(II)第一种方法中使用纯几何方法,适合于没有学习空间向量之前的方法,有利用培养学生的集合论证和空间想象能力,第二种方法使用空间向量方法,两小题前后连贯,利用计算论证和求解,定为最优解法;方法三在几何法的基础上综合使用体积方法,计算较为简洁;方法四不作任何辅助线,仅利用正余弦定理和体积公式进行计算,省却了辅助线和几何的论证,不失为一种优美的方法.18、(1)证明见解析(2)【解析】(1)由已知条件有,根据等比数列的定义即可证明;(2)由(1)求出及,进而可得,利用二次函数的性质即可求解的最小值,从而可得答案.【小问1详解】证明:因为,所以,又因为,所以,所以数列是首项为2公比为2的等比数列;【小问2详解】解:由(1)知,,所以,所以,检验时也满足上式,所以,所以,令,所以,故当即时,取得最小值,所以.19、(1)r=2(2)x﹣2=0或x+﹣3=0【解析】(1)由已知根据对称性可知直线m过圆心C.代入后可求a,进而可求半径;(2)先求出圆心到直线l的距离,然后结合直线与圆相交的弦长公式可求.【小问1详解】解:圆C的标准方程为,圆心为.因为圆C关于直线m对称,所以直线m过圆心C.将代入,解得.此时圆C的标准方程为,半径r=2.【小问2详解】解:设圆心到直线距离为d,则d===1,①当直线l斜率不存在时,直线方程l为x=2,符合条件.②当直线l斜率存在时,设直线l方程为y﹣=k(x﹣2),即x﹣y﹣2k+=0,所以圆心C到直线l的距离d==1,解得,k=﹣,直线l的方程为x+﹣3=0,综上所述,直线l的方程为x﹣2=0或x+﹣3=0.20、(1)答案见解析;(2)7;(3)【解析】(1)根据题意求得,讨论,,,时解,即可得出函数的单调区间;(2)设切点为则结合,得令通过求导研究单调性解得进而解出的值.(3)由已知可得解析式,观察有,求导得原题意可转化为函数在上有两个不同零点.结合根分布可得,函数的两个极值点为是在上的两个不同零点可得且,代入函数中令通过单调性求出进而可得答案.【详解】解:(1),令,解得:①当时,由得,由得,在上单调递减,在上单调递增;②当时,由得或由得所以在上单调递减,在上单调递增;③当时,恒成立,所以上单调递增.④当时,由得或由得所以在上单调递减,在上单调递增.综上:①当时,在上单调递减,在上单调递增;②当时,在上单调递减,在上单调递增;③当时,在上单调递增.④当时,在上单调递减,在上单调递增.(2)设切点为则(*),由可得(**),联立(*)(**)可得,设则,所以在单调递增,在单调递减,又,所以,所以.(3)由已知可得令由题意知在上有两个不同零点.则,因为函数的两个极值点为,则和是在上的两个不同零点.所以且,所以令则所以在上单调递增,所以有其中,即又恒成立,所以故实数的取值范围为.【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法:(1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.21、(1);(2)答案见解析【解析】(1)求出曲线的斜率,切点坐标,求出函数的导数,利用导函数值域斜率的关系,即可求出,(2)求出导函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年电气火灾的报警与灭火系统
- 贾生-李商隐课件
- 2026年桥梁施工工艺与耐久性关系分析
- 2026年桥梁施工中的样板引路与质量提升
- 2026年建筑电气设计中的水电气协调
- 货轮消防安全知识培训课件
- 货物司机安全培训课件
- 肿瘤靶向治疗研究进展与展望
- 2026年湖南水利水电职业技术学院单招职业技能考试参考题库带答案解析
- 人工智能在医学影像分析与诊断中的应用
- 管理会计学智慧树知到期末考试答案章节答案2024年德州学院
- 中国腹部整形术行业市场现状分析及竞争格局与投资发展研究报告2024-2034版
- 全国质量奖现场汇报材料(生产过程及结果)
- 研学实践承办机构服务与管理规范
- 2023年贵州省部分法院聘用制书记员招聘524名笔试参考题库(共500题)答案详解版
- 个人借款借条电子版篇
- 2023年世界上最坑人的搞笑脑筋急转弯整理
- 广西建设领域专业技术人员三新技术网络培训考试题目及答案
- 情绪的作文400字五篇
- 【蓝光】蓝光电梯的调试资料
- NY/T 682-2003畜禽场场区设计技术规范
评论
0/150
提交评论