2026届安徽省蚌埠市第一中学数学高二上期末统考试题含解析_第1页
2026届安徽省蚌埠市第一中学数学高二上期末统考试题含解析_第2页
2026届安徽省蚌埠市第一中学数学高二上期末统考试题含解析_第3页
2026届安徽省蚌埠市第一中学数学高二上期末统考试题含解析_第4页
2026届安徽省蚌埠市第一中学数学高二上期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省蚌埠市第一中学数学高二上期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A. B.C. D.2.圆的圆心坐标与半径分别是()A. B.C. D.3.已知公差为的等差数列满足,则()A B.C. D.4.“中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2021这2020个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为()A. B.C. D.5.在数列中,,则此数列最大项的值是()A.102 B.C. D.1086.窗花是贴在窗纸或窗户玻璃上的剪纸,是古老的传统民间艺术之一.如图是一个窗花的图案,以正六边形各顶点为圆心、边长为半径作圆,阴影部分为其公共部分.现从该正六边形中任取一点,则此点取自于阴影部分的概率为()A. B.C. D.7.设为等差数列的前项和,若,则的值为()A.14 B.28C.36 D.488.某次生物实验6个小组的耗材质量(单位:千克)分别为1.71,1.58,1.63,1.43,1.85,1.67,则这组数据的中位数是()A.1.63 B.1.67C.1.64 D.1.659.若定义在R上的函数满足,则不等式的解集为()A. B.C. D.10.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②某人买彩票中奖;③从集合中任取两个不同元素,它们的和大于2;④在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数是()A.1 B.2C.3 D.411.已知随机变量服从正态分布,,则()A. B.C. D.12.设,直线与直线平行,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图的形状出现存南宋数学家杨辉所著的《详解九章算法·商功》中,后人称为“三角垛”.“三角垛”的最一上层有1个球,第二层有3个球,第三层有6个球……,设从上至下各层球数构成一个数列则___________.(填数字)14.过点且与直线垂直的直线方程为______15.数列中,,,设(1)求证:数列是等比数列;(2)求数列的前项和;(3)若,为数列的前项和,求不超过的最大的整数16.数列满足,则_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,,,记二面角的平面角为(1)若,,求三棱锥的体积;(2)若M为BC的中点,求直线AD与EM所成角的取值范围18.(12分)如图所示,在四棱锥中,底面是正方形,侧棱底面,,是的中点,过点作交于点.求证:(1)平面;(2)平面.19.(12分)如图,已知平面,底面为正方形,,分别为的中点(1)求证:平面;(2)求与平面所成角的正弦值20.(12分)某快递公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).(1)求这60天每天包裹数量的平均值和中位数;(2)在这60天中包裹件数在和的两组中,用分层抽样的方法抽取30件,求在这两组中应分别抽取多少件?21.(12分)如图,在三棱锥中,平面,,,为的中点.(1)证明:平面;(2)求平面与平面所成二面角的正弦值.22.(10分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)设,求数列的前项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由已知得,因为,所以,故选A2、C【解析】将圆的一般方程化为标准方程,即可得答案.【详解】由题可知,圆的标准方程为,所以圆心为,半径为3,故选.3、C【解析】根据等差数列前n项和,即可得到答案.【详解】∵数列是公差为的等差数列,∴,∴.故选:C4、C【解析】由题设且,应用不等式求的范围,即可确定项数.【详解】由题设,且,所以,可得且.所以此数列的项数为.故选:C5、D【解析】将将看作一个二次函数,利用二次函数的性质求解.【详解】将看作一个二次函数,其对称轴为,开口向下,因为,所以当时,取得最大值,故选:D6、D【解析】求得阴影部分的面积,结合几何概型概率计算公式,计算出所求的概率.【详解】设正六边形的边长为,则其面积为.阴影部分面积为,故所求概率为.故选:D7、D【解析】利用等差数列的前项和公式以及等差数列的性质即可求出.【详解】因为为等差数列的前项和,所以故选:D【点睛】本题考查了等差数列的前项和公式的计算以及等差数列性质的应用,属于较易题.8、D【解析】将已有数据从小到大排序,根据中位数的定义确定该组数据的中位数.【详解】由题设,将数据从小到大排序可得:,∴中位数为.故选:D.9、B【解析】构造函数,根据题意,求得其单调性,利用函数单调性解不等式即可.【详解】构造函数,则,故在上单调递减;又,故可得,则,即,解得,故不等式解集为.故选:B.【点睛】本题考察利用导数研究函数单调性,以及利用函数单调性求解不等式,解决本题的关键是根据题意构造函数,属中档题.10、B【解析】因为随机事件指的是在一定条件下,可能发生,也可能不发生的事件,只需逐一判断4个事件哪一个符合这种情况即可【详解】解:连续两次抛掷同一个骰子,两次都出现2点这一事件可能发生也可能不发生,①是随机事件某人买彩票中奖这一事件可能发生也可能不发生,②是随机事件从集合,2,中任取两个元素,它们的和必大于2,③是必然事件在标准大气压下,水加热到时才会沸腾,④是不可能事件故随机事件有2个,故选:B11、B【解析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果【详解】根据随机变量服从正态分布,所以密度曲线关于直线对称,由于,所以,所以,则,所以故选:B.【点睛】本题考查的知识要点:正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题12、C【解析】根据直线平行求解即可.【详解】因为直线与直线平行,所以,即,经检验,满足题意.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题中给出的图形,结合题意找到各层球的数列与层数的关系,得到,即可得解【详解】解:由题意可知,,,,,,故,所以,故答案为:14、【解析】先设出与直线垂直的直线方程,再把代入进行求解.【详解】设与直线垂直的直线为,将代入得:,解得:,故所求直线方程为.故答案为:15、(1)证明见解析;(2);(3)2021【解析】(1)将两边都加,证明是常数即可;(2)求出的通项,利用错位相减法求解即可;(3)先求出,再求出的表达式,利用裂项相消法即可得解.【详解】(1)将两边都加,得,而,即有,又,则,,所以数列是首项为,公比为的等比数列;(2)由(1)知,,则,,,因此,,所以;(3)由(2)知,于是得,则,因此,,所以不超过的最大的整数是202116、【解析】利用来求得,进而求得正确答案.【详解】,,是数列是首项为,公差为的等差数列,所以,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)作出辅助线,找到二面角的平面角,利用余弦定理求出,求出底面积和高,进而求出三棱锥的体积;(2)利用空间基底表达出,结合第一问结论求出,从而求出答案.【小问1详解】取AC的中点F,连接FD,FE,由BC=2,则,故DF⊥AC,EF⊥AC,故∠DFE即为二面角的平面角,即,连接DE,作DH⊥FE,因为,所以平面DEF,因为DH平面DEF,所以AC⊥DH,因为,所以DH⊥平面ABC,因为,由勾股定理得:,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),则,因为,,所以△DEF为等边三角形,则,故三棱锥的体积;【小问2详解】设,则,,由(1)知:,,取为空间中的一组基底,则,由第一问可知:,则其中,且,,故,由第一问可知,又是的中点,所以,所以,因为三棱锥中,所以,所以,故直线AD与EM所成角范围为.【点睛】针对于立体几何中角度范围的题目,可以建立空间直角坐标系来进行求解,若不容易建立坐标系时,也可以通过基底表达出各个向量,进而求出答案.18、(1)证明见解析;(2)证明见解析.【解析】(1)连结、,交于点,连结,通过即可证明;(2)通过,

可证平面,即得,进而通过平面得,结合即证.详解】证明:(1)连结、,交于点,连结,底面正方形,∴是中点,点是的中点,.平面,

平面,∴平面.(2),点是的中点,.底面是正方形,侧棱底面,∴,

,且

,∴平面,∴,又,∴平面,∴,,,平面.【点睛】本题考查线面平行和线面垂直的证明,属于基础题.19、(1)证明见解析;(2).【解析】(1)建立空间直角坐标系,利用向量法证得平面.(2)利用直线的方向向量,平面的法向量,计算线面角的正弦值.【详解】(1)以为原点建立如图所示空间直角坐标系,则.,,所以,由于,所以平面.(2),,设平面的法向量为,则,令,则,所以.设直线与平面所成角为,则.20、(1)平均数和中位数都为260件;(2)在的件数为,在的件数为.【解析】(1)由每组频率乘以组中值相加即可得平均数,设中位数为,由落在区间内的频率为0.5可得结果;(2)先得频率分别为0.1,0.5,由分层抽样的概念即可得结果.【详解】(1)每天包裹数量的平均数为;设中位数为,易知,则,解得.所以公司每天包裹的平均数和中位数都为260件.(2)件数在,的频率分别为0.1,0.5频率之比为1:5,所抽取的30件中,在的件数为,在的件数为.21、(1)证明见解析(2)【解析】(1)根据勾股定理先证明,然后证明,进而通过线面垂直的判定定理证明问题;(2)建立空间直角坐标系,进而求出两个平面的法向量,然后通过空间向量的夹角公式求得答案.【小问1详解】∵,,∴,∴,∵平面,平面,∴,∵,,,∴平面.【小问2详解】以点为坐标原点,向量,的方向分别为,轴的正方向建

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论