版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届宁夏青铜峡市吴忠中学分校高二上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.边长为的正方形沿对角线折成直二面角,、分别为、的中点,是正方形的中心,则的大小为()A. B.C. D.2.双曲线的左、右焦点分别为F1,F2,点P在双曲线上,下列结论不正确的是()A.该双曲线的离心率为B.该双曲线的渐近线方程为C.点P到两渐近线的距离的乘积为D.若PF1⊥PF2,则△PF1F2的面积为323.若直线与直线垂直,则a的值为()A.2 B.1C. D.4.设,,则与的等比中项为()A. B.C. D.5.设函数,则曲线在点处的切线方程为()A. B.C. D.6.已知等比数列的公比为正数,且,,则()A.4 B.2C.1 D.7.命题的否定是()A. B.C. D.8.正方体中,E、F分别是与的中点,则直线ED与所成角的余弦值是()A. B.C. D.9.已知,则“”是“”的()A.充分不必要条件 B.充要条件C.必要不充分条件 D.既不充分也不必要条件10.已知椭圆:的左、右焦点分别为、,为坐标原点,为椭圆上一点.与轴交于一点,,则椭圆C的离心率为()A. B.C. D.11.等差数列的前项和,若,则A.8 B.10C.12 D.1412.的展开式中的系数是()A.1792 B.C.448 D.二、填空题:本题共4小题,每小题5分,共20分。13.设圆,圆,则圆有公切线___________条.14.在等差数列中,,那么等于______.15.如图,在矩形中,,,将沿BD所在的直线进行翻折,得到空间四边形.给出下面三个结论:①在翻折过程中,存在某个位置,使得;②在翻折过程中,三棱锥的体积不大于;③在翻折过程中,存在某个位置,使得异面直线与所成角45°.其中所有正确结论的序号是___________.16.如图,四边形为直角梯形,且,为正方形,且平面平面,,,,则______,直线与平面所成角的正弦值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,.(1)求数列的通项公式;(2)记,其中表示不超过最大整数,如,.(i)求、、;(ii)求数列的前项的和.18.(12分)已知函数在处取得极值确定a的值;若,讨论的单调性19.(12分)已知圆C经过点,,且圆心C在直线上(1)求圆C的标准方程;(2)过点向圆C引两条切线PD,PE,切点分别为D,E,求切线PD,PE的方程,并求弦DE的长20.(12分)已知函数(1)判断的零点个数;(2)若对任意恒成立,求的取值范围21.(12分)已知函数.(1)当时,证明:存在唯一的零点;(2)若,求实数的取值范围.22.(10分)设数列的前项和为,,且,,(1)若(i)求;(ii)求证数列成等差数列(2)若数列为递增数列,且,试求满足条件的所有正整数的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立空间直角坐标系,以向量法去求的大小即可解决.【详解】由题意可得平面,,则两两垂直以O为原点,分别以OB、OA、OC所在直线为x、y、z轴建立空间直角坐标系则,,,,又,则故选:B2、D【解析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a=3,b=4,c=5,,故离心率e,故A正确;由双曲线的性质可知,双曲线线的渐近线方程为y=±x,故B正确;设P(x,y),则P到两渐近线的距离之积为,故C正确;若PF1⊥PF2,则△PF1F2是直角三角形,由勾股定理得,由双曲线的定义可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D错误.故选:D3、A【解析】根据两条直线垂直的条件列方程,解方程求得的值.【详解】由于直线与直线垂直,所以,解得.故选:A4、C【解析】利用等比中项的定义可求得结果.【详解】由题意可知,与的等比中项为.故选:C.5、A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A6、D【解析】设等比数列的公比为(),则由已知条件列方程组可求出【详解】设等比数列的公比为(),由题意得,且,即,,因为,所以,,故选:D7、C【解析】根据含全称量词命题的否定可写出结果.【详解】全称命题的否定是特称命题,所以命题的否定是.故选:C8、A【解析】以A为原点建立空间直角坐标系,求出E,F,D,D1点的坐标,利用向量求法求解【详解】如图,以A为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选:A【点睛】本题考查异面直线所成角的求法,属于基础题.9、B【解析】求得中的取值范围,由此确定充分、必要条件.【详解】,,所以“”是“”的充要条件.故选:B10、C【解析】由椭圆的性质可先求得,故可得,再由椭圆的定义得a,c的关系,故可得答案【详解】,,又,,则,,则,,由椭圆的定义得,,,故选:C11、C【解析】假设公差为,依题意可得.所以.故选C.考点:等差数列的性质.12、D【解析】根据二项式展开式的通项公式计算出正确答案.【详解】的展开式中,含的项为.所以的系数是.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】将圆转化成标准式,结合圆心距判断两圆位置关系,进而求解.【详解】由题意得,圆:,圆:,∴,∴与相交,有2条公切线.故答案为:214、14【解析】根据等差数列的性质得到,求得,再由,即可求解.【详解】因为数列为等差数列,且,根据等差数列的性质,可得,解答,又由.故答案为:14.15、②③【解析】在矩形中,过点作的垂线,垂足分别为,对于①,连接,假设存在某个位置,使得,则可得到,进而得矛盾,可判断;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,再根据几何关系计算即可;对于③,由题知,,设平面与平面所成的二面角为,进而得,进而得异面直线与所成角的余弦值的范围为,即可判断.【详解】解:如图1,在矩形中,过点作的垂线,垂足分别为,则在在翻折过程中,形成如图2的几何体,故对于①,连接,假设存在某个位置,使得,由于,,所以平面,所以,这与图1中的与不垂直矛盾,故错误;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,此时,体积为,故三棱锥的体积不大于,故正确;对于③,,,由②的讨论得,所以,所以,设翻折过程中,平面与平面所成的二面角为,所以,故,由于要使直线与为异面直线,所以,所以,所以,所以异面直线与所成角的余弦值的范围为,由于,所以在翻折过程中,存在某个位置,使得异面直线与所成角为45°.故答案为:②③16、①..②..【解析】以点为坐标原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系,根据空间向量的线性运算求得向量的坐标,由此求得,由线面角的空间向量求解方法求得答案.【详解】解:以点为坐标原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系(如下图所示)由题意可知,,,因为,,所以,故设平面的法向量为,则,令,得因为,所以直线与平面所成角的正弦值为故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)(i),,;(ii).【解析】(1)推导出数列为等差数列,确定该数列的首项和公差,即可求得数列的通项公式;(2)(i)利用对数函数的单调性结合题中定义可求得、、的值;(ii)分别解不等式、、,结合题中定义可求得数列的前项的和.【小问1详解】解:因为,,则,可得,,可得,以此类推可知,对任意的,.由,变形为,是一个以为公差的等差数列,且首项为,所以,,因此,.【小问2详解】解:(i),则,,则,故,,则,故;(ii),当时,即当时,,当时,即当时,,当时,即当时,,因此,数列的前项的和为.18、(1)(2)在和内为减函数,在和内为增函数【解析】(1)对求导得,因为在处取得极值,所以,即,解得;(2)由(1)得,,故,令,解得或,当时,,故为减函数,当时,,故为增函数,当时,,故为减函数,当时,,故为增函数,综上所知:和是函数单调减区间,和是函数的单调增区间.19、(1)(2)或,【解析】(1)设圆心,根据圆心在直线上及圆过两点建立方程求解即可;(2)分切线的斜率存在与不存在分类讨论,利用圆心到切线的距离等于半径求解,再根据圆的切线的几何性质求弦长即可.【小问1详解】设圆心,因为圆心C在直线上,所以①因为A,B是圆上的两点,所以,所以,即②联立①②,解得,所以圆C的半径,所以圆C的标准方程为【小问2详解】若过点P的切线斜率不存在,则切线方程为若过点P的切线斜率存在,设为k,则切线方程为,即由,解得,所以切线方程为综上,过点P的圆C的切线方程为或设PC与DE交于点F,因为,,PC垂直平分DE,所以,所以所以20、(1)个;(2).【解析】(1)求,利用导数判断的单调性,结合单调性以及零点存在性定理即可求解;(2)由题意可得对任意恒成立,令,则,利用导数求的最小值即可求解.【小问1详解】的定义域为,由可得,当时,;当时,;所以在上单调递减,在上单调递增,当时,,,此时在上无零点,当时,,,,且在上单调递增,由零点存在定理可得在区间上存在个零点,综上所述有个零点.【小问2详解】由题意可得:对任意恒成立,即对任意恒成立,令,则,由可得:,当时,;当时,,所以在上单调递减,在上单调递增,所以,所以,所以的取值范围.21、(1)证明见解析;(2)【解析】(1)当时,求导得到,判断出函数的单调性,求出最值,可证得命题成立;(2)当且时,不满足题意,故,又定义域为,讲不等式化简,参变分离后构造新函数,求导判断单调性并求出最值,可得实数的取值范围【详解】(1)函数的定义域为,当时,由,当时,,单调递减;当时,,单调递增;.且,故存在唯一的零点;(2)当时,不满足恒成立,故由定义域为,可得,令,则,则当时,,函数单调递增,当时,,函数单调递减,故当时,函数取得最大值(1),故实数的取值范围是【点睛】方法点睛:本题考查函数零点的问题,考查导数的应用,考查不等式的恒成立问题,关于恒成立问题的几种常见解法总结如下:
参变分离法,将不等式恒成立问题转化函数求最值问题;
主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;
分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;
数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解22、(1);详见解析;(2)5.【解析】(1)由题可得,由条件可依次求各项,即得;猜想,用数学归纳法证明即得;(2)设,由题可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026春招:扬子江药业试题及答案
- 2026年桥梁工程技术交底与监理要点
- 2026春招:信达资产笔试题及答案
- 2026年年会游戏模板素材
- 2026春招:潍柴动力面试题及答案
- 货运公司交通安全课件
- 医疗行业市场分析指标
- 医疗健康产业产业链分析
- 医疗设备智能化发展研究
- 货品安全培训计划课件
- 儿科健康评估与护理
- 四诊合参在护理评估中的综合应用
- 2026年青海省交通控股集团有限公司招聘(45人)笔试考试参考题库及答案解析
- GB 46768-2025有限空间作业安全技术规范
- 压力变送器培训
- 体检中心科主任述职报告
- 春之声圆舞曲课件
- 酸铜镀层晶体生长机制探讨
- 2025年8月30日四川省事业单位选调面试真题及答案解析
- 油气井带压作业安全操作流程手册
- 认知障碍老人的护理课件
评论
0/150
提交评论