版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市昌平区2026届高二数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点在抛物线的准线上,则该抛物线的焦点坐标是()A. B.C. D.2.已知,,则下列结论一定成立的是()A. B.C. D.3.已知递增等比数列的前n项和为,,且,则与的关系是()A. B.C. D.4.某中学的校友会为感谢学校的教育之恩,准备在学校修建一座四角攒尖的思源亭如图它的上半部分的轮廓可近似看作一个正四棱锥,已知此正四棱锥的侧面与底面所成的二面角为30°,侧棱长为米,则以下说法不正确()A.底面边长为6米 B.体积为立方米C.侧面积为平方米 D.侧棱与底面所成角的正弦值为5.在圆内,过点的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A. B.C. D.6.等差数列中,已知,,则的前项和的最小值为()A. B.C. D.7.设为等差数列的前项和,,,则A.-6 B.-4C.-2 D.28.抛物线上有两个点,焦点,已知,则线段的中点到轴的距离是()A.1 B.C.2 D.9.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-810.执行如图所示的程序框图,若输入,则输出的m的值是()A.-1 B.0C.0.1 D.111.设等差数列的前n项和为.若,则()A.19 B.21C.23 D.3812.已知,,,则点C到直线AB的距离为()A.3 B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则函数在区间上的平均变化率为___________.14.若斜率为的直线与椭圆交于,两点,且的中点坐标为,则___________.15.已知正项等比数列的前n项和为,且,则的最小值为_________16.由曲线围成的图形的面积为_______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)证明:数列的前项和.18.(12分)已知等差数列的前项和为,数列是等比数列,,,,.(1)求数列和的通项公式;(2)若,设数列的前项和为,求.19.(12分)已知椭圆的一个顶点为,离心率为(1)求椭圆C的方程;(2)若直线l与椭圆C交于M、N两点,直线BM与直线BN的斜率之积为,证明直线l过定点并求出该定点坐标20.(12分)已知函数在处取得极值确定a的值;若,讨论的单调性21.(12分)如图,正方形和四边形所在的平面互相垂直,.(1)求证:平面;(2)求平面与平面的夹角.22.(10分)已知各项为正数的等比数列中,,.(1)求数列的通项公式;(2)设,求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】首先表示出抛物线的准线,根据点在抛物线的准线上,即可求出参数,即可求出抛物线的焦点.【详解】解:抛物线的准线为因为在抛物线的准线上故其焦点为故选:【点睛】本题考查抛物线的简单几何性质,属于基础题.2、B【解析】根据不等式的同向可加性求解即可.【详解】因为,所以,又,所以.故选:B.3、D【解析】设等比数列的公比为,由已知列式求得,再由等比数列的通项公式与前项和求解.【详解】设等比数列的公比为,由,得,所以,又,所以,所以,,所以即故选:D4、D【解析】连接底面正方形的对角线交于点,连接,则为该正四棱锥的高,即平面,取的中点,连接,则的大小为侧面与底面所成,设正方形的边长为,求出该正四棱锥的底面边长,斜高和高,然后对选项进行逐一判断即可.【详解】连接底面正方形的对角线交于点,连接则为该正四棱锥的高,即平面取的中点,连接,由正四棱锥的性质,可得由分别为的中点,所以,则所以为二面角的平面角,由条件可得设正方形的边长为,则,又则,解得故选项A正确.所以,则该正四棱锥的体积为,故选项B正确.该正四棱锥的侧面积为,故选项C正确.由题意为侧棱与底面所成角,则,故选项D不正确.故选:D5、D【解析】由题,求得圆的圆心和半径,易知最长弦,最短弦为过点与垂直的弦,再求得BD的长,可得面积.【详解】圆化简为可得圆心为易知过点的最长弦为直径,即而最短弦为过与垂直的弦,圆心到的距离:所以弦所以四边形ABCD的面积:故选:D6、B【解析】由等差数列的性质将转化为,而,可知数列是递增数,从而可求得结果【详解】∵等差数列中,,∴,即.又,∴的前项和的最小值为故选:B7、A【解析】由已知得解得故选A考点:等差数列的通项公式和前项和公式8、B【解析】利用抛物线的定义,将抛物线上的点到焦点的距离转化为点到准线的距离,即可求出线段中点的横坐标,即得到答案.【详解】由已知可得抛物线的准线方程为,设点的坐标分别为和,由抛物线的定义得,即,线段中点的横坐标为,故线段的中点到轴的距离是.故选:.9、A【解析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A10、B【解析】计算后,根据判断框直接判断即可得解.【详解】输入,计算,判断为否,计算,输出.故选:B.11、A【解析】由已知及等差数列的通项公式得到公差d,再利用前n项和公式计算即可.【详解】设等差数列的公差为d,由已知,得,解得,所以.故选:A12、D【解析】应用空间向量的坐标运算求在上投影长及的模长,再应用勾股定理求点C到直线AB的距离.【详解】因为,,所以设点C到直线AB的距离为d,则故选:D二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】根据平均变化率的定义即可计算.【详解】设,因,,所以.故答案为:314、-1【解析】根据给定条件设出点A,B的坐标,再借助“点差法”即可计算得解.【详解】依题意,线段的中点在椭圆C内,设,,由两式相减得:,而,于是得,即,所以.故答案为:15、16【解析】根据是等比数列,由,即可得也是等比数列,结合基本不等式的性质即可求出的最小值.【详解】是等比数列,,即,也是等比数列,且,,可得:,当且仅当时取等号,的最小值为16.故答案为:1616、【解析】当时,曲线表示的图形为以为圆心,以为半径的圆在第一象限的部分,所以面积为,根据对称性,可知由曲线围成的图形的面积为考点:本小题主要考查曲线表示的平面图形的面积的求法,考查学生分类讨论思想的运用和运算求解能力.点评:解决此题的关键是看出所求图形在四个象限内是相同的,然后求出在一个象限内的图形的面积即可解决问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析.【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得,即可证得原不等式成立.【小问1详解】解:设等差数列的公差为,则,解得,因此,.【小问2详解】证明:,因此,.故原不等式得证.18、(1),;(2).【解析】(1)设等差数列的公差为,等比数列的公比为,根据题意列出表达式,解出公比和公差,再根据等差数等比列的通项公式的求法求出通项即可;(2)根据第一问得到前n项和,数列,分组求和即可.解析:(1)设等差数列的公差为,等比数列的公比为,∵,,,,∴,∴,,∴,.(2)由(1)知,,∴,∴.19、(1);(2)答案见解析,直线过定点.【解析】(1)首先根据顶点为得到,再根据离心率为得到,从而得到椭圆C的方程.(2)设,,,与椭圆联立得到,利用直线BM与直线BN的斜率之积为和根系关系得到,从而得到直线恒过的定点.【详解】(1)一个顶点为,故,又,即,所以故椭圆的方程为(2)若直线l的斜率不存在,设,,此时,与题设矛盾,故直线l斜率必存在设,,,联立得,∴,∵,即∴,化为,解得或(舍去),即直线过定点【点睛】方法点睛:定点问题,一般从三个方法把握:(1)从特殊情况开始,求出定点,再证明定点、定值与变量无关;(2)直接推理,计算,在整个过程找到参数之间的关系,代入直线,得到定点.20、(1)(2)在和内为减函数,在和内为增函数【解析】(1)对求导得,因为在处取得极值,所以,即,解得;(2)由(1)得,,故,令,解得或,当时,,故为减函数,当时,,故为增函数,当时,,故为减函数,当时,,故为增函数,综上所知:和是函数单调减区间,和是函数的单调增区间.21、(1)证明见解析(2)【解析】(1)由题意可证得,所以以C为坐标原点,所在直线分别为x轴,y轴,z轴建立空间直角坐标系,利用空间向量证明,(2)求出两个平面的法向量,利用空
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中AI编程课中机器人自适应控制算法的优化实践研究课题报告教学研究课题报告
- 医院新入职员工年底总结汇报
- 课件参赛作品简介
- 密室大逃脱题目及答案
- 美术考试题及答案
- 路政考试题及答案
- 雷雨天气安全教育课件
- 课件出现乱码问题
- 2026年数控车工训练题库含答案
- 2026年燃气安检人员技能试题及答案
- DL-T-692-2018电力行业紧急救护技术规范
- 故事绘本中文九色鹿
- 2024年特岗教师招聘考试-特岗教师招聘(面试)笔试历年真题荟萃含答案
- 小微的校园权力清单
- 降低会阴侧切率的PDCA
- 钢结构拆除专项施工方案
- PDCA提高卧床患者踝泵运动锻炼的正确率
- 康养旅游养生旅游服务规范
- -AAFCO猫粮营养指标标准解读
- 《弟子规》国学经典-第33课-同是人类不齐
- GB/T 14344-2022化学纤维长丝拉伸性能试验方法
评论
0/150
提交评论