版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市梅岭中学2026届高二上数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某家庭准备晚上在餐馆吃饭,他们查看了两个网站关于四家餐馆的好评率,如下表所示,考虑每家餐馆的总好评率,他们应选择()网站①评价人数网站①好评率网站②评价人数网站②好评率餐馆甲100095%100085%餐馆乙1000100%200080%餐馆丙100090%100090%餐馆丁200095%100085%A.餐馆甲 B.餐馆乙C.餐馆丙 D.餐馆丁2.双曲线的两个焦点为,,双曲线上一点到的距离为8,则点到的距离为()A.2或12 B.2或18C.18 D.23.若在直线上,则直线的一个方向向量为()A. B.C. D.4.已知椭圆:的左、右焦点分别为、,为坐标原点,为椭圆上一点.与轴交于一点,,则椭圆C的离心率为()A. B.C. D.5.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.如图所示的圆形剪纸中,正六边形的所有顶点都在该圆上,若在该圆形剪纸的内部投掷一点,则该点恰好落在正六边形内部的概率为()A. B.C. D.6.已知等差数列的公差,记该数列的前项和为,则的最大值为()A.66 B.72C.132 D.1987.已知抛物线的焦点为F,直线l经过点F交抛物线C于A,B两点,交抛物浅C的准线于点P,若,则为()A.2 B.3C.4 D.68.抛物线y=4x2的焦点坐标是()A.(0,1) B.(1,0)C. D.9.若是真命题,是假命题,则A.是真命题 B.是假命题C.是真命题 D.是真命题10.是等差数列,,,的第()项A.98 B.99C.100 D.10111.命题“,”的否定是A., B.,C., D.,12.等差数列中,若,,则等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点为双曲线,右支上一点,,为双曲线的左、右焦点,点为线段上一点,的角平分线与线段交于点,且满足,则________;若为线段的中点且,则双曲线的离心率为________14.中国三大名楼之一的黄鹤楼因其独特的建筑结构而闻名,其外观有五层而实际上内部有九层,隐喻“九五至尊”之意,为迎接2022年春节的到来,有网友建议在黄鹤楼内部挂灯笼进行装饰,若在黄鹤楼内部九层塔楼共挂1533盏灯笼,且相邻的两层中,下一层的灯笼数是上一层灯笼数的两倍,则内部塔楼的顶层应挂______盏灯笼15.数列的前项和为,则该数列的通项公式___________16.写出直线一个方向向量______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点和直线.(1)求以为圆心,且与直线相切的圆的方程;(2)过直线上一点作圆的切线,其中为切点,求四边形PAMB的面积的最小值.18.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)设数列的前项和为,证明:.19.(12分)已知函数在与处都取得极值.(1)求a,b的值;(2)若对任意,不等式恒成立,求实数c的取值范围.20.(12分)已知椭圆上的点到左、右焦点、的距离之和为4,且右顶点A到右焦点的距离为1.(1)求椭圆的方程;(2)直线与椭圆交于不同两点,,记的面积为,当时求的值.21.(12分)已知动圆过定点,且与直线相切,圆心的轨迹为(1)求动点的轨迹方程;(2)已知直线交轨迹于两点,,且中点的纵坐标为,则的最大值为多少?22.(10分)正四棱柱的底面边长为2,侧棱长为4.E为棱上的动点,F为棱的中点.(1)证明:;(2)若E为棱上的中点,求直线BE到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据给定条件求出各餐馆总好评率,再比较大小作答.【详解】餐馆甲的总好评率为:,餐馆乙的总好评率为:,餐馆丙的好评率为:,餐馆丁的好评率为:,显然,所以餐馆丁的总好评率最高.故选:D2、C【解析】利用双曲线的定义求.【详解】解:由双曲线定义可知:解得或(舍)∴点到的距离为18,故选:C.3、D【解析】由题意可得首先求出直线上的一个向量,即可得到它的一个方向向量,再利用平面向量共线(平行)的坐标表示即可得出答案【详解】∵在直线上,∴直线的一个方向向量,又∵,∴是直线的一个方向向量故选:D4、C【解析】由椭圆的性质可先求得,故可得,再由椭圆的定义得a,c的关系,故可得答案【详解】,,又,,则,,则,,由椭圆的定义得,,,故选:C5、D【解析】设圆的半径,求出圆的面积与正六边形的面积,再根据几何概型的概率公式计算可得;【详解】解:设圆的半径,则,则,所以,所以在该圆形剪纸的内部投掷一点,则该点恰好落在正六边形内部的概率;故选:D6、A【解析】根据等差数列的公差,求得其通项公式求解.【详解】因为等差数列的公差,所以,则,所以,由,得,所以或12时,该数列的前项和取得最大值,最大值为,故选:A7、C【解析】由题意可知设,由可得,可求得,,根据模长公式计算即可得出结果.【详解】由题意可知,准线方程为,设,可知,,解得:,代入到抛物线方程可得:.,故选:C8、C【解析】将抛物线方程化为标准方程,由此可抛物线的焦点坐标得选项.【详解】解:将抛物线y=4x2的化为标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,).故选:C9、D【解析】因为是真命题,是假命题,所以是假命题,选项A错误,是真命题,选项B错误,是假命题,选项C错误,是真命题,选项D正确,故选D.考点:真值表的应用.10、C【解析】等差数列,,中,,,由此求出,令,得到是这个数列的第100项【详解】解:等差数列,,中,,令,得是这个数列的第100项故选:C11、C【解析】特称命题的否定是全称命题,改量词,且否定结论,故命题的否定是“”.本题选择C选项.12、C【解析】由等差数列下标和性质可得.【详解】因为,,所以.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】过作,交于点,作,交于点,由向量共线定理可得;再由角平分线性质定理和双曲线的定义、结合余弦定理和离心率公式,可得所求值【详解】解:过作交于点,作交于点,由,得,由角平分线定理;因为为的中点,所以,由双曲线的定义,,所以,,,在中,由余弦定理,所以.故答案为:;.【点睛】本题考查双曲线的定义、方程和性质,以及角平分线的性质定理和余弦定理的运用,考查方程思想和运算能力,属于中档题14、【解析】根据给定条件,各层灯笼数从上到下排成一列构成等比数列,利用等比数列前n项和公式计算作答.【详解】依题意,各层灯笼数从上到下排成一列构成等比数列,公比,前9项和为1533,于是得,解得,所以内部塔楼的顶层应挂3盏灯笼.故答案为:315、【解析】根据与关系求解即可.【详解】当时,,当时,,检验:,所以.故答案为:16、【解析】本题可先将直线的一般式化为斜截式,然后根据斜率即可得到直线的一个方向向量.【详解】由题意可知,直线可以化为,所以直线的斜率为,直线的一个方向向量可以写为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用到直线的距离求得半径,由此求得圆的方程.(2)结合到直线的距离来求得四边形面积的最小值.【小问1详解】圆的半径,圆的方程为.【小问2详解】由四边形的面积知,当时,面积最小.此时...18、(1);(2)证明见解析.【解析】(1)根据等差数列的性质及题干条件,可求得,代入公式,即可求得数列的通项公式;(2)由(1)可得,利用裂项相消求和法,即可求得,即可得证.【详解】解:(1)设数列的公差为,在中,令,得,即,故①.由得,所以②.由①②解得,.所以数列的通项公式为:.(2)由(1)可得,所以,故,所以.因为,所以.【点睛】数列求和的常见方法:(1)倒序相加法:如果一个数列的前n项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n项和可以用倒序相加法;(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.19、(1),;(2).【解析】(1)极值点处导数值为零,据此即可求出a和b;(2)利用导数求出f(x)在时的最大值即可.【小问1详解】由题设,,又,,解得,.【小问2详解】由(1)得,即,当时,,随的变化情况如下表:1+0-0+递增极大值递减极小值递增∴在上单调递增,在上单调递减,在上单调递增,∴当时,为极大值,又,显然f(-)<f(2)所以为在上的最大值.要使对任意恒成立,则只需,解得或c>1.∴实数c的取值范围为.20、(1)(2)【解析】(1)根据题意得到,,再根据求解即可.(2)首先设,,再根据求解即可.【小问1详解】由题意,,因为右顶点到右焦点的距离为,即,所以,则,所以椭圆的标准方程为.【小问2详解】设,,且根据椭圆的对称性得,联立方程组,整理得,解得,因为的面积为3,可得,解得.21、(1)(2)【解析】(1)利用抛物线的定义直接可得轨迹方程;(2)设直线方程,联立方程组,结合根与系数关系可得,再根据二次函数的性质可得最值.【小问1详解】由题设点到点的距离等于它到的距离,点的轨迹是以为焦点,为准线的抛物线,所求轨迹的方程为;【小问2详解】由题意易知直线的斜率存在,设中点为,直线的方程为,联立直线与抛物线,得,,且,,又中点为,即,,故恒成立,,,所以,当时,取最大值为.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式22、(1)证明见解析;(2).
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年建筑电气设计中的绿色能源应用
- 2026年G技术在房地产中的创新应用前景
- 货运驾驶员行车安全培训课件
- 检验医学新技术与应用
- 妇产科护理要点与急救技术
- 医疗机器人辅助手术的挑战与机遇
- 2026年广州城市职业学院单招职业技能笔试备考试题带答案解析
- 2026年广州体育职业技术学院高职单招职业适应性测试参考题库带答案解析
- 生物医学光子学在疾病诊断中的应用
- 2026年广东科学技术职业学院高职单招职业适应性考试模拟试题带答案解析
- 青海西宁市2024-2025学年七年级上学期末调研测英语试卷
- 2025至2030双光束紫外可见近红外分光光度计行业发展趋势分析与未来投资战略咨询研究报告
- DB44∕T 2722-2025 公路工程造价管理指南
- 2025四川成都益民集团所属企业招聘财务综合岗等岗位模拟笔试试题及答案解析
- 政府采购招标代理机构自查报告三篇
- 2025年公务员多省联考《申论》(陕西A卷)题及参考答案
- 医药研发合成工作总结
- 2025年检验科工作总结及2026年工作计划6篇
- 放射科X线胸片诊断技术要点
- 省级课题答辩课件
- 2025年四川省法院书记员招聘考试笔试试题含答案
评论
0/150
提交评论