版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.(1)A′(0,4)、B′(-1,1)、C′(3,1);(2)6;(3)P(0,1)或(0,-5).【分析】(1)观察图形可得△ABC的各顶点坐标,继而根据上加下减,左减右加即可得到平移后对应点A′、B′、C′的坐标;即可得到△A′B′C′;(2)直接利用三角形面积公式根据BC以及BC边上的高进行求解即可;(3)由△BCP与△ABC的面积相等可知点P到BC的距离等于点A到BC的距离,据此分情况求解即可.【详解】(1)观察图形可得A(-2,1),B(-3,-2),C(1,-2),因为把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′,所以A′(-2+2,1+3)、B′(-3+2,-2+3)、C′(1+2,-2+3),即A′(0,4)、B′(-1,1)、C′(3,1);(2)S△ABC===6;(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=-3,解得y1=1,y2=-5,∴P(0,1)或(0,-5).【点睛】本题考查了图形的平移,三角形的面积,熟练掌握平移的规律“上加下减,左减右加”是解题的关键.54.证明见解析.【详解】试题分析:首先由平行四边形的性质可得AD=BC,再由全等三角形的判定定理AAS可证明△ADE≌△BFE由此可得AD=BF,进而可证明BC=BF.试题解析:解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.在△ADE与△BFE中,∵∠DEA=∠FEB,∠1=∠2,AE=BE,∴△ADE≌△BFE(AAS),∴AD=BF,∴BC=BF.点睛:本题考查了平行四边形的性质、全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边、对顶角以及公共角.55.(1)见解析;(2)A′(﹣5,4)、B′(﹣1,6)、O′(﹣4,2);(3)22.【分析】(1)根据网格结构找出平移后A、B、O的对应点A′、B′、O′的位置,然后顺次连接即可;(2)根据网格结构写出点A′、B′、O′的坐标即可;(3)分向上平移和向左平移两个部分,利用平行四边形的面积公式列式计算即可得解.【详解】解:(1)△A′B′O′如图所示;(2)A′(﹣5,4)、B′(﹣1,6)、O′(﹣4,2);(3)OB向上平移2个单位扫过的面积为2×3=6,接着向左平移4个单位扫过的面积为4×4=16,所以平移过程中OB扫过的面积一共为6+16=22.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.56.(Ⅰ)图见解析;(Ⅱ)平行;(III)存在,.【分析】(Ⅰ)先根据点的坐标描点,再连接即可得;(Ⅱ)先根据点的坐标可得轴,轴,再根据平行公理推论即可得出结论;(III)先求出点的坐标和的长,再设点的坐标为,从而可得的长,然后利用三角形的面积公式建立方程求出的值,由此即可得.【详解】解:(Ⅰ)先根据点的坐标描点,再连接,如图所示:(Ⅱ),轴,轴,,即线段与线段的位置关系是平行;(III)由题意,画出图形如下:轴于轴于,,,,设点的坐标为,则,三角形的面积为,三角形的面积为,三角形与三角形的面积相等,,解得,则点的坐标为.【点睛】本题考查了坐标与图形、一元一次方程的几何应用等知识点,熟练掌握点坐标的性质是解题关键.57.(1);(2)2;(3);【分析】(1)直接根据等腰直角三角形的性质进行求解即可;(2)过E作EF⊥AC,交AC的延长线于F,利用AAS证明△DEF≌△BDA,再根据全等三角形的性质及线段的和差关系即可求解;(3)由题可知BE=,则DE=BD=,根据勾股定理可以求出AD的长,即可求解.【详解】解:(1)∵△ABC为直角三角形,且AB=AC,∴△ABC为等腰直角三角形,∴AB:AC:BC=1:1:,∵BC=10,∴AB=;(2)如图:过E作EF⊥AC,交AC的延长线于F,∴∠F=∠A=90°,∠DEF+∠EDF=90°,∵∠BDE=90°,∴∠EDF+∠BDA=90°,∴∠DEF=∠BDA,∵BD=DE,∴△DEF≌△BDA(AAS),∴EF=AD=,DF=AB=,∵AB=AC=,则CD=,∴CF==EF,∴(3)由题可知BE=,则DE=BD=,∴AD=,当点D在点A的左侧时,CD=AC-AD=当点D在点A的左右侧时,CD=AC+AD=故答案为:【点睛】本题考查了全等三角形的判定及性质、勾股定理、以及等腰直角三角形的性质,熟练掌握知识点是解题的关键.58.(1)A(﹣2,﹣2),B(3,1),C(0,2);(2)A′(﹣3,0),B′(2,3),C(﹣1,4);(3)7.【分析】(1)根据点的坐标的定义即可写出答案;(2)根据上加下减,左减右加的原则写出答案即可;(3)先将三角形补成一个矩形,再减去三个直角三角形的面积即可.【详解】解:(1)点A、B、C分别在第三象限、第一象限和y轴的正半轴上,则A(﹣2,﹣2),B(3,1),C(0,2);(2)∵把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,∴横坐标减1,纵坐标加2,即A′(﹣3,0),B′(2,3),C(﹣1,4);(3)S△ABC=4×5﹣×5×3﹣×4×2﹣×1×3=20﹣7.5﹣4﹣1.5=7.【点睛】本题考查了点的坐标的确定,三角形面积的求法以及坐标图形的变换-平移,是基础知识要熟练掌握.59.(1)证明见解析;(2)10.【详解】试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=10.点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.60.【分析】把②×2+①,消去y,求出x的值,再把求得的x的值代入①,求出y的值即可.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职会展服务与管理(展会接待礼仪)试题及答案
- 2025年高职计算机网络(网络故障诊断)试题及答案
- 2025年大二(国际政治)国际政治经济学测试卷
- 2025年中职(计算机应用)表格制作阶段测试题及答案
- 2025年高职(医学检验技术)分子生物学检验综合测试题及答案
- 2025年大学一年级(健康服务与管理)健康管理学基础试题及答案
- 2025年大学大一(法学)民法总论基础试题及答案
- 2025年大学农业工程(农业工程专业知识测试)试题及答案
- 2025年中职工业机器人系统操作与运维(故障诊断)试题及答案
- 2025年高职(环境监测技术)水质监测分析综合测试试题及答案
- 医院抗菌药物合理使用管理记录
- 物业管理员实操简答试题附答案
- 造价咨询方案的指导思想
- 网约车停运费民事起诉状模板
- 初中业务校长工作汇报
- 人工智能技术在仲裁中的应用与挑战-洞察及研究
- 2025年公安联考申论真题及解析答案
- 家庭使用电安全知识培训课件
- 肺结核合并糖尿病的护理查房论文
- 2024-2025学年四川省成都市锦江区七中学育才学校七年级数学第一学期期末学业质量监测模拟试题含解析
- 基于单片机的智能垃圾桶的设计
评论
0/150
提交评论