版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南阳卧龙区七年级数学真题中考衔接夺冠卷及解析考试时间:120分钟满分:150分姓名:班级:学号:一二三*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前5分钟收取答题卡3、本试卷共60小题,含详细答案及解析,篇幅50+页数4、本试卷可通过WPS转换为word格式第I卷客观题一、选择题(本大题共30小题,每小题1.5分,共45分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑.)1.如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有(
).A.1个 B.2个 C.3个 D.4个2.小明去文具店购买了笔和本子共5件,已知两种文具的单价均为正整数且本子的单价比笔的单价贵.在付账时,小明问是不是27元,但收银员却说一共48元,小明仔细看了看后发现自己将两种商品的单价记反了.小明实际的购买情况是()A.1支笔,4本本子 B.2支笔,3本本子C.3支笔,2本本子 D.4支笔,1本本子3.如图,在四边形中,,,,分别是边,上的动点(含端点,但点不与点重合)点,分别是线段,的中点,若线段的最大值为2.5,则的长为()A.5 B. C.2.5 D.34.如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中不能说明四边形ABCD是平行四边形的是()A.AD=BC B.AC=BDC.AB∥CD D.∠BAC=∠DCA5.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为()A. B. C. D.6.已知是二元一次方程组的解,则m+3n的值为()A.7 B.9 C.14 D.187.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,可得△ABC≌△EDC,这时测得DE的长就是AB的长.判定△ABC≌△EDC最直接的依据是()A.HL B.SAS C.ASA D.SSS8.如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A. B.2 C. D.69.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于点D,下列四个结论:①BE=EF﹣CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn,其中正确结论的个数有()A.1个 B.2个 C.3个 D.4个10.如的对角线与相较于,,若,,则长()A.6 B.10 C.12 D.1811.如图,在RtABC中,∠B=90°,AB=3,BC=4,将ABC折叠,使点B恰好落在边AC上,与点重合,AE为折痕,则E长为(
)A.3cm B.2.5cm C.1.5cm D.1cm12.如图,已知∠ABC=∠DEF,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.AC=DF D.BE=CF13.在ABC和中,已知∠A=∠,AB=,添加下列条件中的一个,不能使ABC≌一定成立的是()A.AC= B.BC= C.∠B=∠ D.∠C=∠14.下列条件中,能判定一个四边形是平形四边形的是(
)A.一组对边平行,另一组对边相等 B.一组对边平行,一组对角相等C.一组邻边相等,一组对角相等 D.一组对边平行,一组对角互补15.把一堆练习本分给学生,如果每名学生分4本,那么多4本;如果每名学生分5本,那么最后1名学生只有3本.设有x名学生,y本书,根据题意,可列方程组为:()A. B. C. D.16.如图所示,点,,,,…,根据这个规律,可得点的坐标是()A. B.C. D.17.在平面直角坐标系的第四象限内有一点P,点P到x轴的距离为7,到y轴的距离为8,则点P的坐标是()A.(﹣8,7) B.(8,﹣7)C.(7,﹣8) D.(8,﹣7)或(8,7)18.如图,根据下列条件,不能判断是直角三角形的是(
)A. B.C. D.19.如图,等边的边长为,射线,点从点出发沿射线以的速度运动,点从点出发沿射线以的速度运动.设运动时间为,当()时,以、、、为顶点的四边形是平行四边形.A.1或2 B.2或3 C.2或4 D.2或620.矩形具有而平行四边形不具有的性质是()A.对角线互相平分 B.邻角互补 C.对角相等 D.对角线相等21.用加减消元法解方程组,先消去y,下面运算正确的是()A.①×5+②×4 B.①×5﹣②×4 C.①×4+②×5 D.①×4﹣②×522.如图,10块形状、大小相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意可列方程组为()A. B. C. D.23.如图,在ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2 B.3 C.4 D.524.如图,射线OC的端点O在直线AB上,设∠1的度数为,∠2的度数为,且比的2倍多10°,则列出的方程组正确的是(
)A. B. C. D.25.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是(
)A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC、填空题(本大题共15小题,每小题1分,共15分.不需要写出解答过程,请把答案直接填在答题卡相应的位置上.)(共15题;共15分)26.已知在平面直角坐标系中,点在第二象限,且到轴的距离为3,到轴的距离为4,则点的坐标为______.27.已知关于x,y的方程组与方程的解相同,则k的值为________.28.如图,有一直角三角形纸片,边,,,将该直角三角形纸片沿折叠,使点与点重合,则四边形的周长为______.29.若正方形的对角线的长为4,则该正方形的面积为_________.30.在中,斜边,则______.31.写出一个解为的二元一次方程组________.32.如图,在菱形中,,点在上,若,则__________.33.如图,在平面直角坐标系中,的顶点,的坐标分别为,,把沿轴向右平移得到,如果点的坐标为,则点的坐标为__________.34.如图,,、分别是、的中点,平分,交于点,若,,则的长是______.35.如图,在四边形ABCD中,,,点E为CD上一点且DE=3EC,点F,G分别是AE,BE的中点,若FG=4cm,则DE的长度为______.36.已知a,b满足方程组,则a-b的值为________.37.如图,在矩形中,点E在边上,连接,,F是线段上一定点,M是线段上一动点.若,,,且周长的最小值为6,则的长为________.38.如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=,则BE的最小值为________.39.方程组的解是_____.40.如图,3个平衡的天平左盘中“〇”、“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为_____.第卷客观题、解答题(本大题共20小题,每小题4.5分,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤等.)(共20题;共90分)41.如图,已知O为坐标原点,B(0,3),OB=CD,且OD=2OC,将△BOC沿BC翻折至△BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使∠MBA=∠BCO,点F是射线BA上的一点.(1)请直接写出C、D两点的坐标:点C,点D;(2)当BF=BC时,连接FE.①求点F的坐标;②求此时△BEF的面积.42.一艘轮船从港向南偏西48°方向航行到达岛,再从岛沿方向航行到达岛,港到航线的最短距离是.(1)若轮船速度为小时,求轮船从岛沿返回港所需的时间.(2)岛在港的什么方向?43.如图,在□ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.44.如图,小明家在一条东西走向的公路北侧米的点处,小红家位于小明家北米(米)、东米(米)点处.(1)求小明家离小红家的距离;(2)现要在公路上的点处建一个快递驿站,使最小,请确定点的位置,并求的最小值.45.如图所示,一架25米长的梯子AC斜靠在一面竖直的墙AB上,这时梯子底端C到墙的距离BC为7米.(1)求这个梯子的顶端距地面的高度AB的长;(2)如果梯子的顶端A沿墙下滑4米到点,小明说梯子的底端C在水平方向向右也滑动4米.你认为小明说的对吗?请说明你的理由.46.某商场的运动服装专柜,对两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.第一次第二次品牌运动服装数/件2030品牌运动服装数/件3040累计采购款/元1020014400(1)问两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?47.如图,在平面直角坐标系中,点为坐标原点,点的坐标为,点的坐标为,其中是二元一次方程组的解,过点作轴的平行线交轴于点.(1)求点的坐标;(2)动点从点出发,以每秒个单位长度的速度沿射线的方向运动,连接,设点的运动时间为秒,三角形的面积为,请用含的式子表示(不用写出相应的的取值范围);(3)在(2)的条件下,在动点从点出发的同时,动点从点出发以每秒个单位长度的速度沿线段的方向运动.过点作直线的垂线,点为垂足;过点作直线的垂线,点为垂足.当时,求的值.48.如图,菱形的对角线、相交于点,,,与交于点.(1)试判断四边形的形状,并说明理由;(2)若,,求菱形的面积.49.阅读下列材料,并完成相应的任务.名句“运筹帷幄之中,决胜千里之外”中的“筹”原意是指“算筹”,在我国古代的数学名著《九章算术》和《孙子算经》(如图1)中都有记载.“算筹”是古代用来进行计算的工具之一,它是将几寸长的小竹棍摆在平面上进行运算,“算筹”的摆放有纵、横两种形式(如图2).当表示一个多位数时,要像阿拉伯计数一样,把各数位的数码从左到右排列,但各数位数码的摆放需要纵横相间:个位、百位、万位数用纵式表示,十位、千位、十万位数用横式表示,“0”用空位来代替,例如:2307用“算筹”表示就是,而《九章算术》中“方程”一章介绍了用“算筹图”解决二元一次方程组的方法,例如,在从左到右的符号中,前两个符号分别代表未知数的系数,后两个符号表示对应的常数项,则根据此图可以列出方程.任务:(1)用“算筹”表示的数是____________.(2)请你根据如图所示的“算筹图”,列出方程组并求解.50.如图,某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q,R处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?51.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点和点距离门槛都为1尺(1尺=10寸),则的长是多少?52.如图,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形.(2)求四边形ABCE的面积.53.在四边形ABCD中,AD∥BC,AD=BC,对角线AC、BD交于点O,BD平分∠ABC,延长AD至点E,使DE=BO,连接OE.(1)求证:四边形ABCD是菱形;(2)若AD=6,∠DAB=60°,求OE的长.54.【教材呈现】下图是华师版八年级上册数学教材第94页的部分内容.线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.已知:如图,,垂足为点C,,点P直线MN上的任意一点.求证:.(1)请根据教材内容,结合图①,写出完整的证明过程.【定理应用】如图②,作图①中的的边AP的垂直平分线DE,交PA,PC于点D,E,连结AE.(2)若,,求的周长;(3)在(1)的条件下,直接写出EP的长为________.55.如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足(a+8)2+=0,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点B的坐标,AO和BC位置关系是;(2)如图(1)当P、Q分别在线段AO,OC上时,连接PB,QB,使S△PAB=4S△QBC,求出点P的坐标;(3)在P、Q的运动过程中,当∠CBQ=30°时,请直接写出∠OPQ和∠PQB的数量关系.56.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?57.在矩形ABCD中,AB=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动,如图①,设点P的运动时间为t(t≤5)秒.(1)PC=cm(用含t的代数式表示);(2)当t为何值时,△ABP≌△DCP?请说明理由;(3)如图②,当点P从点B开始运动的同时,点Q从点C出发,以vcm/s的速度沿CD向点D运动(Q到达D点即停),是否存在这样的v,使△ABP与P、Q、C三点围成的三角形全等?若存在,请求出v的值;若不存在,请说明理由.58.如图,在中,过点作,交于点,交于点,过点作,交于点,交于点.(1)求证:四边形是平行四边形;(2)已知,求的长.59.如图,三角形中,,,是平移之后得到的图形,并且的对应点的坐标为.(1)作出平移之后的图形,并写出、两点的坐标分别为______,_____;(2)为中任意一点,则平移后对应点的坐标为______.(3)求的面积;(4)轴上有一点,使的面积与相同,求坐标.60.解二元一次方程组:.答案及解析1.D【详解】分析:如图延长EF交BC的延长线于G,取AB的中点H连接FH.证明△DFE≌△FCG得EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;详解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.2.A【分析】设购买了笔x件,购买了本子(5-x)件,本子的单价为a元,笔的单价为b元,分类讨论解方程即可.【详解】解:设购买了笔x件,购买了本子(5-x)件,本子的单价为a元,笔的单价为b元,列方程组得,当x=1时,原方程组为,解得,符合题意;当x=2时,原方程组为,解得,不符合题意,舍去;当x=3时,原方程组为,解得,不符合题意,舍去;当x=4时,原方程组为,解得,不符合题意,舍去;故选:A.【点睛】本题考查了含参数的二元一次方程组的应用,解题关键是理解题意,找出等量关系,列出方程组,分类讨论解方程组.3.故选:D.【点睛】本题考查平行四边形的面积计算,利用方程的思想方法求得平行四边形的底是解题关键.10.D【分析】由点E、F分别是AB、AC的中点,EF=4,利用三角形中位线的性质,即可求得BC的长,然后由菱形的性质,求得菱形ABCD的周长.【详解】解:∵点E、F分别是AB、AC的中点,EF=4,∴BC=2EF=8.∵四边形ABCD是菱形,∴菱形ABCD的周长是:4×8=32.故选:D.【点睛】此题考查了菱形的性质以及三角形中位线的性质.此题难度不大,注意掌握数形结合思想的应用.11.B【分析】根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,即可求得其周长.【详解】在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=12AC=3∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=16.故选B.【点睛】本题考查了直角三角形的性质、等腰三角形的判定以及平行四边形的判定;熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.12.A【分析】连接BP,首先说明DE是线段BF的垂直平分线,可证,延长即可解决问题.【详解】解:如图,连接BP,BF.∵△ABC是等边三角形,D、E、F分别为边AB、BC、AC的中点,∴DE∥AC,BF⊥DE,易知DE是线段BF的垂直平分线,∴PB=PF,∴PF+PC=PB+PC,∵PB+PC≥BC,∴PF+PC≥4,∴PF+PC的最小值为4.故选A.【点睛】本题考查轴对称最短问题,等边三角形的性质,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.D【分析】直接根据中位线的性质即可求解.【详解】解:∵DE是△ABC的中位线,∴DE=AC=×10=5,故选:D.【点睛】此题主要考查中位线的性质,熟练掌握中位线的性质是解题关键.14.C【分析】利用平行线的判定与性质结合平行四边形的判定得出即可.【详解】∵ABCD,∴∠B+∠C=180°,当∠A=∠C时,则∠A+∠B=180°,故ADBC,则四边形ABCD是平行四边形.故选C.【点睛】本题考查了平行四边形的判定,掌握平行四边形的判定是解题的关键.15.D【分析】根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有EF=BC,从而求出EF.【详解】解:∵E、F分别是AB、AC的中点.即EF是△ABC的中位线,∴EF=BC=×8=4(cm).故选D.【点睛】本题考查了三角形的中位线定理:三角形的中位线等于第三边的一半.比较简单.16.D【分析】根据三角形的中位线定理,可得EF=DN,DN=2EF=5,利用勾股定理求出AD的长,即得结论.【详解】解:∵点E、F分别为DM、MN的中点,∴EF=DN,∵EF最大值为2.5,∴当DN最大,即当N与B重合时,有DN=2EF=5,∴,∴解得AD=3,故选:D.【点睛】本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想.4.B【详解】解:A.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意;B.∵AB=CD,AC=BD,∴不能说明四边形ABCD是平行四边形,故该选项符合题意;C.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,故该选项不符合题意;D.∵AB=CD,∠BAC=∠DCA,AC=CA,∴△ABC≌△CDA,∴AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意.故选B.5.D【分析】根据勾股定理计算AC的长,利用面积和差关系可求的面积,由三角形的面积法求高即可.【详解】解:由勾股定理得:AC==,∵S△ABC=3×3﹣=,∴,∴,∴BD=,故选:D.【点睛】本题考查了网格与勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.6.B【分析】将代入方程组,得到方程组,再将此方程组中的两个方程相加即可求解.【详解】解:由题意,将代入方程组,得,①②得,,故选:B.【点睛】本题考查二元一次方程组的解,理解二元一次方程组的解与二元一次方程组的关系是解题的关键.7.C【解析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知判断方法.解:因为证明在△ABC≌△EDC用到的条件是:BC=CD,∠ABC=∠EDC=90°,∠ACB=∠ECD(对顶角相等),所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选:C.此题考查了三角形全等的判定方法,解题关键是明确判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.8.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.又∵点E是CD的中点,DE=CD,∴OE是△BCD的中位线,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15.故选A【点睛】此题重点考察学生对于平行四边形的性质的理解,三角形的中位线,平行四边形的对角对边性质是解题的关键.2.D【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【详解】只有②③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【点睛】本题考查平行四边形的定义以及性质,解题的关键是理解如何确定平行四边形的四个顶点,四个顶点的位置确定了,平行四边形的大小就确定了,属于中考常考题型.3.D【详解】由平行四边形的性质和三角形中位线定理得出选项A、B、C正确;由OB≠OC,得出∠OBE≠∠OCE,选项D错误;即可得出结论.解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=DC,OE∥DC,∴OE∥AB,∴∠BOE=∠OBA,∴选项A、B、C正确;∵OB≠OC,∴∠OBE≠∠OCE,∴选项D错误;故选D.“点睛”此题考查了平行四边形的性质,还考查了三角形中位线定理,解决问题的方法是采用排除法解答.4.B【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选B.【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解.5.C【分析】过点P作AD的垂线PF,交AD于F,再延长FP交BC于点E,表示出S1+S2,得到即可.【详解】解:如图,过点P作AD的垂线PF,交AD于F,再延长FP交BC于点E,根据平行四边形的性质可知PE⊥BC,AD=BC,∴S1=AD×PF,S2=BC×PE,∴S1+S2=AD×PF+BC×PE=AD×(PE+PE)=AD×EF=S,故选C.【点睛】本题考查了三角形的面积和平行四边形的性质,解题的关键是作出平行四边形过点P的高.6.C【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.【详解】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=6,AB=CD,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故选:C.【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD是解题的关键.7.B【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【详解】∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选B.考点:1.平行四边形的性质;2.等腰三角形的判定与性质;3.勾股定理.8.C【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【详解】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,∴MN=DE=.故选C.【点睛】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.9.A【分析】过A作AH⊥BC于H,根据已知条件得到AE=CE,求得DE=BC,求得DF=AH,根据三角形的面积公式得到DE•DF=2,得到AB•AC=8,求得AB=2(负值舍去),根据勾股定理即可得到结论.【详解】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC=.故选:A.【点睛】本题考查了三角形中位线定理,三角形的面积的计算,勾股定理,平行线的判定和性质,正确的识别图形是解题的关键.10.A【分析】由,,分别为三条边的中点,可知DE、EF、DF为的中位线,即可得到的周长.【详解】解:如图,∵,,分别为三条边的中点,∴,,,∵,∴,故选:A.【点睛】本题考查了三角形的中位线,熟练掌握三角形的中位线平行于第三边且是第三边的一半是解题的关键.11.C【分析】根据平行四边形的性质得到AD∥BC,AB∥CD,求得DE∥BC,∠ABD=∠CDB,推出BD∥CE,于是得到四边形BCED为平行四边形,故A正确;根据平行线的性质得到∠DEF=∠CBF,根据全等三角形的性质得到EF=BF,于是得到四边形BCED为平行四边形,故B正确;根据平行线的性质得到∠AEB=∠CBF,求得∠CBF=∠BCD,求得CF=BF,同理,EF=DF,不能判定四边形BCED为平行四边形;故C错误;根据平行线的性质得到∠DEC+∠BCE=∠EDB+∠DBC=180°,推出∠BDE=∠BCE,于是得到四边形BCED为平行四边形,故D正确.【详解】∵四边形是平行四边形,∴,,∴,,∵,∴,∴,∴为平行四边形,故A正确;∵,∴,在与中,,∴,∴,∵,∴四边形为平行四边形,故B正确;∵,∴,∵,∴,∴,同理,,∴不能判定四边形为平行四边形;故C错误;∵,∴,∵,∴,∴四边形为平行四边形,故D正确,故选C.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.12.D【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【详解】添加A、,无法得到AD∥BC或CD=BA,故错误;添加B、,无法得到CD∥BA或,故错误;添加C、,无法得到,故错误;添加D、∵,,,∴,,∴,∵,∴,∴四边形是平行四边形.故选D.【点睛】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.13.C【分析】根据平行四边形的判定方法逐项分析即可.【详解】A.∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形;
B.∵AB=DC,AD=BC,∴四边形ABCD是平行四边形;C.等腰梯形ABCD满足AB∥DC,AD=BC,但四边形ABCD是平行四边形;
D.OA=OC,OB=OD,∴四边形ABCD是平行四边形;故选C.【点睛】本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.14.A【分析】根据平行线的性质得到∠AEB=∠CBF,求得∠CBF=∠BCD,求得CF=BF,同理,EF=DF,不能判定四边形BCED为平行四边形;故A错误;根据平行线的性质得到∠DEF=∠CBF,根据全等三角形的性质得到DF=CF,于是得到四边形BCED为平行四边形,故B正确;根据平行四边形的性质得到AD∥BC,AB∥CD,求得DE∥BC,∠ABD=∠CDB,推出BD∥CE,于是得到四边形BCED为平行四边形,故C正确;根据平行线的性质得到∠DEC+∠BCE=∠EDB+∠DBC=180°,推出∠BDE=∠BCE,于是得到四边形BCED为平行四边形,故D正确.【详解】解:A、∵AE∥BC,∴∠AEB=∠CBF,∵∠AEB=∠BCD,∴∠CBF=∠BCD,∴CF=BF,同理,EF=DF,∴不能判定四边形BCED为平行四边形;故A错误;∵DE∥BC,∴∠DEF=∠CBF,∠DEF=∠CBF在△DEF与△CBF中,∴△DEF△CBF(ASA),∴DF=CF∵EF=BF∴四边形BCED为平行四边形,故B正确;∵四边形ABCD是平行四边形,∴.AD∥BC,AB∥CD,∴DE∥CE,∠ABD=∠CDB,∠ABD=∠DCE,∴∠DCE=∠CDB,∴BD∥CE,∴四边形BCED为平行四边形,故C正确;∵AEB∥C,∴∠DEC+∠BCE=∠EDB+∠DBC=180°∵∠AEC=∠CBD,∴∠BDE=∠BCE,∴四边形BCED为平行四边形,故D正确.故选:A.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.15.C【分析】由,得出∠BAC=90°,则①正确;由等边三角形的性质得∠DAB=∠EAC=60°,则∠DAE=150°,由SAS证得△ABC≌△DBF,得AC=DF=AE=4,同理△ABC≌△EFC(SAS),得AB=EF=AD=3,得出四边形AEFD是平行四边形,则②正确;由平行四边形的性质得∠DFE=∠DAE=150°,则③正确;∠FDA=180°-∠DFE=30°,过点作于点,,则④不正确;即可得出结果.【详解】解:∵,∴,∴∠BAC=90°,∴AB⊥AC,故①正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,又∴∠BAC=90°,∴∠DAE=150°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC,在△ABC与△DBF中,,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故②正确;∴∠DFE=∠DAE=150°,故③正确;∴∠FDA=180°-∠DFE=180°-150°=30°,过点作于点,∴,故④不正确;∴正确的个数是3个,故选:C.【点睛】本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、平角、周角、平行是四边形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.16.D【详解】试题分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选D.考点:翻折变换(折叠问题);勾股定理.17.C【分析】先证明再求解利用轴对称可得答案.【详解】解:由对折可得:矩形,BC=8由对折得:故选C.【点睛】本题考查的是矩形的性质,等腰三角形的判定,勾股定理的应用,轴对称的性质,掌握以上知识是解题的关键.18.D【详解】根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.故选D.9.D【解析】在中,和的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得②正确;由平行线的性质和角平分线的定义得出和是等腰三角形得出故①正确;由角平分线的性质得出点O到各边的距离相等,故③正确;由角平分线定理与三角形面积的求解方法,即可求得③设,,则,故④正确.解:∵在中,和的平分线相交于点O,∴,,,∴,∴;故②正确;∵在中,和的平分线相交于点O,∴,.∵EF∥BC,∴,,∴,,∴,,∴,故①正确;如图:过点O作于M,作于N,连接OA,∵在中,和的平分线相交于点O,∴,∴;故④正确;∵在中,和的平分线相交于点O,∴点O到各边的距离相等,故③正确.故选:D.此题考查了角平分线的定义与性质,等腰三角形的判定与性质,解题的关键是掌握角平分线及等腰三角形的性质并且注意数形结合思想的应用.10.C【分析】利用平行四边形的性质和勾股定理易求AO的长,进而可求出AC的长.【详解】解:∵▱ABCD的对角线AC与BD相交于点O,∴,,∵AB⊥AC,∴∠BAO=90°,∴,∴AC=2AO=12,故选C.【点睛】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.11.C【分析】根据折叠得到BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4-x,根据勾股定理求得AC的值,再由勾股定理可得方程x2+22=(4-x)2,再解方程即可算出答案.【详解】解:根据折叠可得BE=EB′,AB′=AB=3,设BE=EB′=x,则EC=4-x,∵∠B=90°,AB=3,BC=4,∴在Rt△ABC中,由勾股定理得,AC=,∴B′C=5-3=2,在Rt△B′EC中,由勾股定理得,x2+22=(4-x)2,解得x=1.5,故选:C.【点睛】本题考查了勾股定理与折叠问题,熟练掌握折叠性质并能运用勾股定理求解是解题的关键.12.C【解析】根据全等三角形的判定方法一一判断即可;A、根据ASA,可以推出△ABC≌△DEF,本选项不符合题意.B、根据AAS,可以推出△ABC≌△DEF,本选项不符合题意.C、SSA,不能判定三角形全等,本选项符合题意.D、根据SAS,可以推出△ABC≌△DEF,本选项不符合题意.故选:C.本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法;13.B【解析】全等三角形的判定定理有:SSS,SAS,ASA,AAS,根据图形和已知条件,灵活解题.解:A.∠A=∠,AB=,AC=,根据SAS能推出ABC≌,正确,故A不符合题意;B.具备∠A=∠,AB=,BC=不能判断ABC≌,错误,故B符合题意;C.根据ASA能推出ABC≌,正确,故C不符合题意;D.根据AAS,能推出ABC≌,正确,故D不符合题意,故选:B.本题考查全等三角形的判定方法,是重要考点,掌握相关知识是解题关键.14.B【分析】利用梯形的例子可判定选项A,利用两组对边分别平行的四边形是平行四边形可判定选项B;再利用平行四边形的判定方法分析选项C、D看能否判定是平行四边形即可.【详解】A、一组对边平行,另一组对边相等,梯形满足一组对边平行,另一组对边相等,不是平行四边形,故不正确;B、一组对边平行,一组对角相等,由此可推出另一组对边也平行,故是平行四边形,正确;C、一组邻边相等,一组对角相等,不能推出是平行四边形,故不正确;D、一组对边平行,一组对角互补,不能推出是平行四边形,故不正确.故选B.【点睛】此题考查平行四边形的判定,分析理解每个选项中的命题是关键.15.C【分析】根据“每名学生分4本,那么多4本;如果每名学生分5本,那么最后1名学生只有3本”,列出二元一次方程组即可.【详解】解:由题意可得故选C.【点睛】此题考查的是二元一次方程组的应用,掌握实际问题中的等量关系是解决此题的关键.16.C【分析】根据图形,找到点的坐标变换规律:横坐标依次为1、2、3、4、…、n,纵坐标依次为2、0、﹣2、0、…四个一循环,进而求解即可.【详解】解:观察图形可知,点的横坐标依次为1、2、3、4、…、n,纵坐标依次为2、0、﹣2、0、…四个一循环,且2021÷4=505…1,∴点的坐标是(2026,2),故选:C.【点睛】本题考查点坐标规律探究,找到点的坐标变换规律是解答的关键.17.B【分析】根据第四象限内点的横坐标是正数,纵坐标是负数以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【详解】解:∵第四象限的点P到x轴的距离是7,到y轴的距离是8,∴点P的横坐标是8,纵坐标是﹣7,∴点P的坐标为(8,﹣7).故选:B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.18.D【分析】根据三角形内角和定理,勾股定理的逆定理一一判断即可.【详解】解:A、∠D=20°,∠B=70°,则∠BAD=180°-20°-70°=90°,则△ABD是直角三角形;B、AB=5,AD=12,BD=13,满足,则△ABD是直角三角形;C、AC=BC=CD,则∠B=∠CAB,∠D=∠CAD,∴∠BAD=∠CAB+∠CAD=(∠B+∠CAB+∠D+∠CAD)=90°,则△ABD是直角三角形;D、∠B=3∠D,∠BAD=8∠D,则3∠D+8∠D+∠D=180°,解得:∠D=15°,则∠BAD=8∠D=120°,则△ABD不是直角三角形;故选D.【点睛】本题考查勾股定理的逆定理,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.D【分析】首先根据平行四边形的性质得到AE=CF,再分点F在线段BC上和点F在线段BC的延长线上两种情况进行解答即可求出t的值.【详解】解:若以A、、、为顶点的四边形是平行四边形,则有AE=CF当点F在线段BC上时,AE=BC-BF,即:t=6-2t解得,t=2;当点F在线段BC的延长线上时,AE=BF-BC,即:t=2t-6解得,t=6所以,当t=6s或2s时,以A、、、为顶点的四边形是平行四边形.故选:D.【点睛】此题主要考查了动点几何问题以及平行四边形的性质和等边三角形的性质,熟练掌握相关性质是解答此题的关键.20.D【分析】根据矩形相对于平行四边形的对角线特征:矩形的对角线相等,求解即可.【详解】解:由矩形对角线的特性可知:矩形的对角线相等.故选:D.【点睛】本题考查的知识点是矩形的性质以及平行四边形的性质,掌握矩形以及平行四边形的边、角、对角线的性质是解此题的关键.21.C【分析】用加减消元法消去y,只需①×4+②×5即可.【详解】解:①×4得,8x+20y=32③,②×5得,15x-20y=25④,③+④得,23x=57,故选:C.【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.22.B【分析】根据图示可得:大长方形的宽等于1个小长方形的长+2个小长方形的宽,小长方形的长等于3个小长方形的宽,联立两个方程即可.【详解】解:由题图可得等量关系式:故选B.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.23.B【分析】根据直角三角形的斜边的中线等于斜边的一半,得到DF=5,由三角形中位线的性质得到DE=8,最后由线段的和差解题即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=
AB=5,∵BC=16,D、E分别是AB,AC的中点,∴DE=BC=8,∴EF=DE-DF=3,故选:B.【点睛】本题考查了直角三角形的性质和中位线性质,掌握定理是解题的关键.24.B【分析】根据∠1与∠2互为邻补角及∠1的度数比∠2的度数的2倍多10°,可列出方程组.【详解】∵∠1与∠2互为邻补角,∴,∵比的2倍多10°,∴∴可列出方程组:故选:B.【点睛】本题考查由实际问题抽象出二元一次方程组,根据两个角的和为180及两角的大小关系列出方程组.25.D【详解】根据平行四边形判定定理进行判断:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D.考点:平行四边形的判定.26.(-4,3)【分析】根据第二象限点的横坐标是负数,纵坐标是正数,点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值解答.【详解】解:点在第二象限,且到轴的距离为3,到轴的距离为4,点的横坐标为,纵坐标为3,点的坐标为.故答案为.【点睛】本题考查了点的坐标,熟记点到轴的距离等于纵坐标的绝对值,到轴的距离等于横坐标的绝对值是解题的关键.27.11【分析】首先解方程组,利用k表示出x、y的值,然后代入,即可得到一个关于k的方程,求得k的值.【详解】解:,,得,把代入①,得,解得,代入,得,去分母,得,解得.故答案为11.【点睛】本题考查了二元一次方程组的解法,二元一次方程的解,解题关键是掌握二元一次方程组的解法.28.18.【分析】先由折叠的性质得AE=CE,AD=CD,∠DCE=∠A,进而得出,∠B=∠BCD,求得BD=CD=AD=AB=5,DE为△ABC的中位线,得到DE的长,再在Rt△ABC中,由勾股定理得到AC=8,即可得四边形DBCE的周长.【详解】∵沿DE折叠,使点A与点C重合,∴AE=CE,AD=CD,∠DCE=∠A,∴∠BCD=90°-∠DCE,又∵∠B=90°-∠A,∴∠B=∠BCD,∴BD=CD=AD=AB=5,∴DE为△ABC的中位线,∴DE=BC=3,∵BC=6,AB=10,∠ACB=90°,∴AC=,∴四边形DBCE的周长为:BD+DE+CE+BC=5+3+4+6=18.故答案为18.【点睛】本题主要考查了折叠问题和勾股定理的综合运用.本题中得到ED是△ABC的中位线关键.29.8【分析】根据正方形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:∵正方形的一条对角线的长为4,∴这个正方形的面积=×4²=8.故答案为:8.【点睛】本题考查了正方形的性质,熟练掌握正方形的面积的两种求法是解题的关键.30.200【分析】根据勾股定理,可知两直角边的平方和与斜边平方相同,进而得出答案.【详解】∵在中,斜边∴∴200故答案为:200.【点睛】本题考查勾股定理,解题关键是根据勾股定理,发现题干中.31.(答案不唯一)【详解】先围绕列一组算式如1+2=3,1-2=-1然后用x,y代换得等.32.115°【分析】先根据菱形性质求出∠BCD,∠ACE,再根据求出∠AEC,最后根据两直线平行,同旁内角互补解题即可.【详解】解:四边形ABCD是菱形,,∴AB∥CD,∴∠BCD=180°-∠B=130°,∠ACE=∠BCD=65°,∵,∴∠ACE=∠AEC=65°,∴∠BAE=180°-∠AEC=115°.【点睛】本题考查了菱形性质,等腰三角形性质,解题方法较多,根据菱形性质求解∠ACE是解题关键.33.(7,0)【分析】根据B点横坐标与A点横坐标之差和E点横坐标与D点横坐标之差相等即可求解.【详解】解:由题意知:A、B两点之间的横坐标差为:,由平移性质可知:E、D两点横坐标之差与B、A两点横坐标之差相等,设E点横坐标为a,则a-6=1,∴a=7,∴E点坐标为(7,0).故答案为:(7,0).【点睛】本题考查了图形的平移规律,平移前后对应点的线段长度不发生变化,熟练掌握平移的性质是解决此题的关键.34..【分析】根据三角形中位线定理得到DE∥AB,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF,计算即可.【详解】解:、分别是、的中点,,,,,平分,,,,,故答案为.【点睛】本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.35.【点睛】本题考查作图复杂作图,平行四边形的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.50【分析】先利用平行四边形的性质,得,求得,再利用角平分线定义求,利用平行线性质,即可找到∠1与关系,即可得到答案.【详解】解:∵四边形是平行四边形,∴.∴.∵平分∴∵∴∵∴故填:50.【点睛】本题考查了平行四边形的性质,解答本题的关键是通过平行线的性质找到角与角之间的关系.27.8【分析】根据平行四边形的对边相等和对角线互相平分可得,,又因为点是的中点,可得是的中位线,可得,所以易求的周长.【详解】解:的周长为20,,则.四边形是平行四边形,对角线,相交于点,,.点是的中点,是的中位线,,,的周长,即的周长为8.故答案为:8.【点睛】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.28.【分析】根据中位线定理得到,再判定四边形ABCD是平行四边形,利用平行四边形的性质得,则可得.【详解】解:∵点F,G分别是AE,BE的中点,∴∵在四边形ABCD中,,∴四边形ABCD是平行四边形∴∵∴故答案为.【点睛】本体考查了中位线定理、平行四边的性质和判定,解题的关键是利用性质找到边与边之间的关系.36.-2【分析】把方程组中的两个方程相减即可得解;【详解】∵,∴①-②得:;故答案是:.【点睛】本题主要考查了解二元一次方程组,准确计算是解题的关键.37.1【分析】根据勾股定理得到BE=,推出△CDE是等腰直角三角形,得到∠CDE=∠ADE=45°,作点C关于直线DE的对称点G,连接GF交DE于M,则DG=CD=4,此时,△MFC周长的最小值为6,设CF=x,则GF=6-x,连接GE,根据勾股定理列方程即可得到结论.【详解】解:∵四边形ABCD是矩形,∴∠B=90°,∵AB=4,AE=,∴BE=,∵BC=AD=6,∴CE=4,∵CD=AB=4,∠DCE=90°,∴△CDE是等腰直角三角形,∴∠CDE=∠ADE=45°,作点C关于直线DE的对称点G,连接GF交DE于M,则DG=CD=4,此时,△MFC周长的最小值为6,即CM+MF+CF=GM+MF+CF=GF+CF=6,设CF=x,则GF=6-x,连接GE,则GE⊥BC,EF=6-2-x,在Rt△EGF中,EG2+EF2=GF2,∴(4-x)2+42=(6-x)2,解得:x=1,∴CF=1,故答案为:1.【点睛】本题主要考查了轴对称-最短路线问题,矩形的性质,等腰直角三角形的判定和性质,正确的作出图形是解题的关键.38.【分析】将BC绕着点C顺时针旋转90°得FC,作直线FE交OM于H,则∠BCF=90°,BC=FC,证△BCP≌△FCE(SAS),得∠BHF=90°,故点E在直线FH上,即点E的轨迹为直线FH,当点E与点H重合时,BE=BH最短,根据直角三角形性质得CP,正方形CPHE中,PH=CP=,BH=BP+PH即可得出答案.【详解】如图所示,将BC绕着点C顺时针旋转90°得FC,作直线FE交OM于H,则∠BCF=90°,BC=FC,∵将CP绕点C按顺时针方向旋转90°得CE,∴∠PCE=90°,PC=EC,∴∠BCP=∠FCE,在△BCP和△FCE中,BC=FC,∠BCP=∠FCE,PC=EC,∴△BCP≌△FCE(SAS),∴∠CBP=∠CFE,又∵∠BCF=90°,∴∠BHF=90°,∴点E在直线FH上,即点E的轨迹为直线FH,∵BH⊥EF,∴当点E与点H重合时,BE=BH最短,∵当CP⊥OM时,Rt△BCP中,∠CBP=30°,∴CP=BC=,BP==,又∵∠PCE=∠CPH=∠PHE=90°,CP=CE,∴正方形CPHE中,PH=CP=,∴BH=BP+PH=,即BE的最小值为,故答案为:.【点睛】本题主要考查了正方形的性质,勾股定理,全等三角形的判定与性质以及垂线段最短的综合运用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等以及垂线段最短进行判断.39.【分析】①+②得出3x+y=1④,③﹣②求x,把x=1代入④求出y,把x=1,y=﹣2代入①求出z即可.【详解】①+②得:3x+y=1④,③﹣②得:x=1,把x=1代入④得:3+y=1,解得:y=﹣2,把x=1,y=﹣2代入①得:1﹣4+z=0,解得:z=3,所以原方程组的解为,故答案为.【点睛】本题考查了解三元一次方程组,能把三元一次方程转化成二元一次方程组或一元一次方程是解此题的关键.40.11【分析】设每个“〇”的重量为x,每个“□”的重量为y,根据前两个天平右盘中砝码的质量,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(2x+y)中即可求出结论.【详解】解:设每个“〇”的重量为x,每个“□”的重量为y,依题意得:,解得:,∴2x+y=2×4+3=11.故答案为:11.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.41.(1)(-1,0),(2,0);(2)①F(-3,4);②.【解析】(1)由B(0,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;(2)①过点F作FP⊥轴于点P,利用AAS证明△FPB≌△BOC即可求解;②过点F作FQ⊥BE于点Q,证明FB是∠PBE的角平分线,利用角平分线的性质求解即可.解:(1)∵B(0,3),∴OB=3,∵OB=CD,且OD=2OC,∴OC=1,OD=2,∴C(-1,0),D(2,0);故答案为:(-1,0),(2,0);(2)①过点F作FP⊥轴于点P,∵∠PBF=∠BCO,BF=BC,又∠FPB=∠BOC=90°,∴△FPB≌△BOC(AAS),∴FP=BO=3,PB=OC=1,∴PO=4,∴F(-3,4);②过点F作FQ⊥BE于点Q,∵∠CBO+∠BCO=90°,∠PBF=∠BCO,∴∠CBO+∠PBF=90°,则∠CBF=90°,由折叠的性质得:∠EBC=∠OBC,EB=BO=3,∴∠EBC+∠EBF=90°,∴∠EBF=∠PBF,即FB是∠PBE的角平分线,又FQ⊥BE,FP⊥轴,∴FQ=FP=3,∴△BEF的面积为BEFQ=.本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.42.(1)3小时;(2)北偏西【分析】(1)中,利用勾股定理求得的长度,则,然后在中,利用勾股定理来求的长度,再根据时间路程速度即可求得答案;(2)由勾股定理的逆定理推知.由方向角的定义作答.【详解】解:(1)由题意可知,AD⊥BC,在中,,∴,,∵BC=125km,,,∴(小时),∴从岛返回港所需的时间为3小时;(2),,,,,
岛在港的北偏西.【点睛】本题考查了勾股定理的应用,方向角问题,是基础知识比较简单.43.(1)见解析;(2)时,四边形EGCF是矩形,理由见解析.【分析】(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,(2)当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.44.(1)米;(2)见解析,米【分析】(1)如图,连接AB,根据勾股定理即可得到结论;(2)如图,作点A关于直线MN的对称点A',连接A'B交MN于点P.驿站到小明家和到小红家距离和的最小值即为A'B,根据勾股定理即可得到结论.【详解】解:(1)如图,连接AB,由题意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000,∵AB>0∴AB=1300米;(2)如图,作点A关于直线MN的对称点A',连接A'B交MN于点P.驿站到小明家和到小红家距离和的最小值即为A'B,由题意知AD=200米,A'C⊥MN,∴A'C=AC+AD+A'D=500+200+200=900米,在Rt△A'BC中,∵∠ACB=90°,∴A'B2=A'C2+BC2=9002+12002=2250000,∵A'B>0,∴A'B=1500米,即从驿站到小明家和到小红家距离和的最小值为1500米.【点睛】本题考查轴对称-最短问题,勾股定理,题的关键是学会利用轴对称解决最短问题.45.(1);(2)小明说的不对,见解析【分析】(1)在中,利用勾股定理解答即可;(2)先求出梯子顶端下滑后距离地面的高度,然后在,利用勾股定理解答即可.【详解】解:(1)根据勾股定理:梯子顶端距离地面的高度为:;(2)小明说的不对,理由如下:梯子下滑了4米,即梯子顶端距离地面的高度为,根据勾股定理得:,解得=.即梯子的底端在水平方向滑动了8米.【点睛】本题主要考查了勾股定理的实际应用,解题的关键是构建直角三角形,熟记勾股定理.46.(1)两种品牌运动服的进货单价分别为240元和180元;(2)最多能购进65件品牌运动服.【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【详解】(1)设两种品牌运动服的进货单价分别为元和元.根据题意,得,解之,得.经检验,方程组的解符合题意.答:两种品牌运动服的进货单价分别为240元和180元.(2)设购进品牌运动服件,则购进品牌运动服件,∴,解得,.经检验,不等式的解符合题意,∴.答:最多能购进65件品牌运动服.【点睛】此题主要考查了一元一次不等式的应用和二元一次方程组的应用,正确得出等量关系是解题关键.47.(1);(2);(3)或4.【分析】(1)先求出是二元一次方程组的解,然后代入A、B的坐标即可解答;(2)先求出OC的长,分点P在线段OB上和OB的延长线上两种情况,分别利用三角形面积公式计算即可;(3)分两种情况解答:①当点P在线段OB上时,连接PQ,过点M作PM⊥AC交AC的延长线于M,可得OP=2CQ,构建方程解答即可;②当点P在BO的延长线上时,同理可解.【详解】解:(1)解二元一次方程组,得:∴A(6,7),B(-8,0);(2)①当点P在线段OB上时,BP=4t,OP=8-4t,∴②当点P在OB延长线上时,综上所述;(3)①当点P在线段OB上时,如图:连接PQ,过点M作PM⊥AC交AC的延长线于M,又;②当在线段延长线上时同理可得:.综上,满足题意t的值为或4.【点睛】本题主要考查了三角形的面积、二元一次方程组等知识点,学会用分类讨论的思想思考问题以及利用面积法解决线段之间的关系成为解答本题的关键.48.(1)见详解;(2)24【分析】(1)先证四边形AEBO为平行四边形,再由菱形的性质得∠AOB=90°,从而可得四边形AEBO是矩形;(2)根据勾股定理和菱形的面积公式解答即可.【详解】解:(1)四边形AEBO是矩形,理由如下:∵BE∥AC,AE∥BD∴四边形AEBO是平行四边形.又∵菱形ABCD对角线交于点O∴AC⊥BD,即∠AOB=90°.∴四边形AEBO是矩形;(2)∵四边形ABCD是菱形,∴OA=AC=4,OB=OD,AC⊥BD,∵四边形AEBO是矩形,∴AB=OE=5,∴OB=,∴BD=2OB=6,∴菱形ABCD的面积=AC×BD=×8×6=24.【点睛】本题考查的是菱形的性质、矩形的判定与性质和判定、勾股定理、平行四边形的判定与性质等知识,熟练掌握矩形的判定与性质是解题的关键.49.(1)6238;(2),【分析】(1)根据题干中不同的横、纵式所表示的数字即可得出答案;(2)对照横、纵式表示的数字,前两个分别表示x、y的系数,剩下的表示右边的常数,据此列出关于x、y的方程组,解之即可.【详解】解:(1)用“算筹”表示的数是6238;(2)根据“算筹”可得
由①得③把③代入②得解得
把代入③得.
∴原方程组的解得.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是根据题意理解不同的横、纵式所表示的数字,并列出关于x、y的方程组及加减消元法解二元一次方程组的能力.50.北偏东45°(或西北)【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海
天”号航行方向.【详解】解:由题意可得:RP=18海里,PQ=24海里,QR=30海里,∵182+242=302,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿东北方向航行,即沿北偏东45°方向航行,∴∠RPS=45°,∴“海天”号沿北偏西45°(或西北)方向航行.【点睛】本题考查了勾股定理的应用,解题的重点主要是能够根据勾股定理的逆定理发现直角三角形,关键是从实际问题中抽象出直角三角形,难度不大.51.101寸【分析】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到结论.【详解】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r(寸),DE=10寸,OE=CD=1寸,∴AE=(r1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸.【点睛】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.52.(1)见详解;(2)【分析】(1)先证明AB∥CE,再推出∠ADB=∠OBC=60°,从而得AD∥BC,进而得到结论;(2)根据勾股定理求出AO的长,再根据平行四边形的面积公式,即可求解.【详解】(1)证明:∵∠OAB=90°,∴AB⊥x轴,∵y轴⊥x轴,∴AB∥y轴,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵∠OAB=90°,D是OB的中点,∴DB=DO==4,∵∠AOB=30°,∴AB==4,∵DB=DO=AB=4,∴∠BDA=∠BAD=(180°-60°)÷2=60°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四边形ABCE是平行四边形;(2)在直角△OAB中,AB=4,BO=8,∴AO=,∴平行四边形ABCE的面积=AB∙AO=.【点睛】本题主要考查直角三角形的性质,等边三角形的性质,勾股定理以及平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.53.(1)证明见解析;(2)3【分析】(1)先证四边形ABCD是平行四边形,再证AB=AD,即可得出结论;(2)证△ABD是等边三角形,得∠ADB=60°,再由菱形的性质得到AC⊥BD,OB=OD,∠DAO=30°,然后由含30°角的直角三角形的性质得OD=AD=3,OA=OD=3,证∠E=∠EAO,得OE=OA,即可求解.【详解】(1)证明:∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∠CBD=∠ADB,∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形;(2)解:∵∠DAB=60°,AB=AD,∴△ABD是等边三角形,∴∠ADB=60°,∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,∠DAO=∠DAB=30°,∴∠AOD=90°,∵DE=OB,∴OD=ED,∴∠E=∠DOE,∵∠ADO=∠E+∠DOE=60°,∴∠E=∠DOE=30°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年心理测试变态考试题库及答案参考
- 2026年广东食品药品职业学院单招综合素质考试题库及答案1套
- 2026年宁德职业技术学院单招职业倾向性测试题库及答案1套
- 2026年建筑电工期末试题及答案(名校卷)
- 2026年河南科技职业大学单招职业适应性测试模拟测试卷附答案
- 2026年朔州陶瓷职业技术学院单招职业倾向性考试题库及答案1套
- 2026云南文山州马关县中医医院面向社会招聘2名编外中药学专业技术人员笔试备考题库及答案解析
- 2026年山东省临沂市单招职业适应性测试模拟测试卷及答案1套
- 2025年合肥产投康养集团有限公司及子公司社会招聘17名考试备考题库附答案
- 2025年中国广电甘肃网络股份有限公司临夏州分公司招聘笔试备考题库附答案
- T/CCT 007-2024煤化工废水处理运营能力评价
- GB/T 45554-2025种猪生产性能测定技术规范
- 食品居间合同协议
- 2022学年上海复旦附中高一(上)期末信息技术试题及答案
- 广东省广州市白云区2024-2025学年六年级(上)期末语文试卷(有答案)
- 心内科护理带教工作总结
- 知行合一实践出真知主题班会
- GB/T 45166-2024无损检测红外热成像检测总则
- 山东省菏泽市东明县2024-2025学年七年级上学期考试生物试题
- 北京市海淀区2023-2024学年六年级上学期语文期末试卷(含答案)
- 2024集装箱储能系统测试大纲
评论
0/150
提交评论