版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省迪庆2026届高一上数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从含有两件正品和一件次品的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为()A. B.C. D.2.函数的定义域为,值域为,则的取值范围是()A. B.C. D.3.已知定义在R上的函数满足:对任意,则A. B.0C.1 D.34.若,则的值为A. B.C. D.5.若集合,,则A. B.C. D.6.函数(且)的图像恒过定点()A. B.C. D.7.设函数,则()A.是偶函数,且在单调递增 B.是偶函数,且在单调递减C.是奇函数,且在单调递增 D.是奇函数,且在单调递减8.定义运算:,将函数的图象向左平移的单位后,所得图象关于轴对称,则的最小值是()A. B.C. D.9.香农定理是所有通信制式最基本的原理,它可以用香农公式来表示,其中是信道支持的最大速度或者叫信道容量,是信道的带宽(),S是平均信号功率(),是平均噪声功率().已知平均信号功率为,平均噪声功率为,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()A. B.C. D.10.以下给出的是计算的值的一个程序框图,其中判断框内应填入的条件是A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则函数的最大值为___________,最小值为___________.12.已知实数x,y满足条件,则的最大值___________.13.两圆x2+y2+6x-4y+9=0和x2+y2-6x+12y-19=0的位置关系是___________________.14.已知函数,若,则实数的取值范围是__________.15.命题,,则为______.16.定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.若函数是上的平均值函数,则实数的取值范围是____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的周期和单调递减区间;(2)将的图象向右平移个单位,得到的图象,已知,,求值.18.如图,四棱锥的底面为矩形,,.(1)证明:平面平面.(2)若,,,求点到平面的距离.19.已知函数的最小正周期为(1)求图象的对称轴方程;(2)将的图象向左平移个单位长度后,得到函数的图象,求函数在上的值域20.已知,是方程的两根.(1)求实数的值;(2)求的值;(3)求的值.21.已知函数的部分图象如图所示,点为函数的图象与y轴的一个交点,点B为函数图象上的一个最高点,且点B的横坐标为,点为函数的图象与x轴的一个交点(1)求函数的解析式;(2)已知函数的值域为,求a,b的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据独立重复试验的概率计算公式,准确计算,即可求解.【详解】由题意,该抽样是有放回的抽样,所以每次抽到正品的概率是,抽到次品的概率是,所以取出的两件产品中恰有一件是次品的概率为.故选:B.2、B【解析】观察在上的图象,从而得到的取值范围.【详解】解:观察在上的图象,当时,或,当时,,∴的最小值为:,的最大值为:,∴的取值范围是故选:B【点睛】本题考查余弦函数的定义域和值域,余弦函数的图象,考查数形结合思想,属基础题3、B【解析】,且,又,,由此可得,,是周期为的函数,,,故选B.考点:函数的奇偶性,周期性,对称性,是对函数的基本性质的考察.【易错点晴】函数满足则函数关于中心对称,,则函数关于轴对称,常用结论:若在上的函数满足,则函数以为周期.本题中,利用此结论可得周期为,进而,需要回到本题利用题干条件赋值即可.4、C【解析】由题意求得,化简得,再由三角函数的基本关系式,联立方程组,求得,代入即可求解.【详解】由,整理得,所以,又由三角函数的基本关系式,可得由解得,所以.故选C.【点睛】本题主要考查了三角函数的基本关系式的化简求值问题,其中解答中熟记三角函数的基本关系式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解析】因为集合,,所以A∩B=x故选C.6、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.7、D【解析】利用函数奇偶性的定义可判断出函数的奇偶性,分析函数解析式的结构可得出函数的单调性.【详解】函数的定义域为,,所以函数为奇函数.而,可知函数为定义域上减函数,因此,函数为奇函数,且是上的减函数.故选:D.8、C【解析】由题意可得,再根据平移得到的函数为偶函数,利用对称轴即可解出.【详解】因为,所以,其图象向左平移个单位,得到函数的图象,而图象关于轴对称,所以其为偶函数,于是,即,又,所以的最小值是故选:C.9、A【解析】利用题设条件,计算出原信道容量的表达式,再列出在B不变时用所求平均噪声功率表示的信道容量的表达式,最后列式求解即得.【详解】由题意可得,,则在信道容量未增大时,信道容量为,信道容量增大到原来2倍时,,则,即,解得,故选:A10、A【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值【详解】程序运行过程中,各变量值如下表所示:第一圈:S=1,k=2,第二圈:S=1+,k=3,第三圈:S=1++,k=4,…依此类推,第十圈:S=1+,k=11退出循环其中判断框内应填入的条件是:k≤10,故选A【点睛】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】利用对勾函数的单调性直接计算函数的最大值和最小值作答.【详解】因函数在上单调递增,在上单调递减,当时,函数在上单调递增,在上单调递减,即有当时,,而当时,,当时,,则,所以函数的最大值为,最小值为.故答案为:;12、【解析】利用几何意义,设,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,即可求解.【详解】由题意作出如下图形:令,则k可看作圆上的动点P到原点的连线的斜率,而相切时的斜率为最大或最小值,当直线与圆相切时,在直角三角形OAB中,,∴,∴.故答案为:13、外切【解析】先把两个圆的方程变为标准方程,分别得到圆心坐标和半径,然后利用两点间的距离公式求出两个圆心之间的距离与半径比较大小来判别得到这两个圆的位置关系【详解】由x2+y2+6x-4y+9=0得:(x+3)2+(y-2)2=4,圆心O(-3,2),半径为r=2;由x2+y2-6x+12y-19=0得:(x-3)2+(y+6)2=64,圆心P(3,-6),半径为R=8则两个圆心的距离,所以两圆的位置关系是:外切即答案为外切【点睛】本题考查学生会利用两点间的距离公式求两点的距离,会根据两个圆心之间的距离与半径相加相减的大小比较得到圆与圆的位置关系14、【解析】先确定函数单调性,再根据单调性化简不等式,最后解一元二次不等式得结果.【详解】在上单调递增,在上单调递增,且在R上单调递增因此由得故答案为:【点睛】本题考查根据函数单调性解不等式,考查基本分析求解能力,属中档题.15、,【解析】由全称命题的否定即可得解.【详解】因为命题为全称命题,所以为“,”.故答案为:,.16、##,##【解析】根据题意,方程,即在内有实数根,若函数在内有零点.首先满足,解得,或.对称轴为.对分类讨论即可得出【详解】解:根据题意,若函数是,上的平均值函数,则方程,即在内有实数根,若函数在内有零点则,解得,或(1),.对称轴:①时,,,(1),因此此时函数在内一定有零点.满足条件②时,,由于(1),因此函数在内不可能有零点,舍去综上可得:实数的取值范围是,故答案为:,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)首先利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;(2)首先根据三角函数的平移变换规则求出的解析式,根据,得到,再根据同角三角函数的基本关系求出,最后根据两角和的余弦公式计算可得;【小问1详解】解:∵,即,所以函数的最小正周期,令,解得.故函数的单调递减区间为.【小问2详解】解:由题意可得,∵,∴,∵,所以,则,因此.18、(1)证明见解析;(2).【解析】(1)连接,交于点,连接,证明平面,即可证明出平面平面.(2)用等体积法,即,即可求出答案.【小问1详解】连接,交于点,连接,如图所示,底面为矩形,为,的中点,又,,,,又,平面,平面,平面平面【小问2详解】,,,,在中,,,在中,,在中,,,,,,设点到平面的距离为,由等体积法可知,又平面,为点到平面的距离,,,即点到平面的距离为19、(1);(2)【解析】(1)先由诱导公式及倍角公式得,再由周期求得,由正弦函数的对称性求对称轴方程即可;(2)先由图象平移求出,再求出,即可求出在上的值域【小问1详解】,则,解得,则,令,解得,故图象的对称轴方程为.【小问2详解】,,则,,则在上的值域为.20、(1);(2);(3)【解析】(1)根据方程的根与系数关系可求,,然后结合同角平方关系可求,(2)结合(1)可求,,结合同角基本关系即可求,(3)利用将式子化为齐次式,再利用同角三角函数的基本关系,将弦化切,代入可求【详解】解:(1)由题意可知,,,∴,∴,∴,(2)方程的两根分别为,,∵,∴,∴,,则,(3)【点睛】本题主要考查了同角三角函数关系式和万能公式的应用,属于基本知识的考查21、(1)(2)或【解析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤矿设备标书中的培训方案
- 车间设备安全培训活动课件
- 《分子热运动》教案物理科课件
- 2025年产品运营私域流量池搭建与精细化运营专项总结(2篇)
- 车间生产安全培训内容
- 车间日常安全培训记录课件
- 车间安全生产管理课件
- 车间安全教育再培训课件
- 车间安全培训频次课件
- 车间安全培训效果评价课件
- 2025年家庭投资理财规划:科学配置与稳健增值指南
- 杜氏肌营养不良运动功能重建方案
- 2026贵州大数据产业集团有限公司第一次招聘155人模拟笔试试题及答案解析
- 呼吸内科主任谈学科建设
- 肿瘤药物给药顺序课件
- 海南计算机与科学专升本试卷真题及答案
- 企业安全一把手授课课件
- 学校中层干部述职报告会
- 音乐疗法对焦虑缓解作用-洞察及研究
- 2023年广东省深圳市中考适应性数学试卷(原卷版)
- 建筑工程钢筋质量验收报告模板
评论
0/150
提交评论