版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市安海中学2026届数学高二上期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左、右焦点分别为,,焦距为,过点作轴的垂线与椭圆相交,其中一个交点为点(如图所示),若的面积为,则椭圆的方程为()A B.C. D.2.已知过点的直线与圆相切,且与直线垂直,则()A. B.C. D.3.设直线,.若,则的值为()A.或 B.或C. D.4.“”是“函数在上有极值”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知椭圆:与双曲线:有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则的最大值为()A. B.C. D.6.在空间直角坐标系下,点关于轴对称的点的坐标为()A. B.C. D.7.若,则下列等式一定成立的是()A. B.C. D.8.某商场有四类食品,其中粮食类、植物油类、动物性食品类以及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5C.6 D.79.直线分别交坐标轴于A,B两点,O为坐标原点,三角形OAB的内切圆上有动点P,则的最小值为()A.16 B.18C.20 D.2210.下列说法中正确的是()A.存在只有4个面的棱柱 B.棱柱的侧面都是四边形C.正三棱锥的所有棱长都相等 D.所有几何体的表面都能展开成平面图形11.命题“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得12.圆()上点到直线的最小距离为1,则A.4 B.3C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线C的方程为,,,双曲线C上存在一点P,使得,则实数a的最大值为___________.14.已知函数(1)求函数的单调区间;(2)设上存在极大值M,证明:.15.已知函数,则f(e)=__.16.螺旋线这个名词来源于希腊文,它的原意是“旋卷”或“缠卷”,平面螺旋便是以一个固定点开始向外逐圈旋绕而形成的曲线,如下图(1)所示.如图(2)所示阴影部分也是一个美丽的螺旋线型的图案,它的画法是这样的:正方形ABCD的边长为4,取正方形ABCD各边的四等分点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的四等分点M,N,P,Q,作第3个正方形MNPQ,依此方法一直继续下去,就可以得到阴影部分的图案.如图(2)阴影部分,设直角三角形AEH面积为,直角三角形EMQ面积为,后续各直角三角形面积依次为,…,,若数列的前n项和恒成立,则实数的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)当时,求不等式的解集;(2)若在上恒成立,求取值范围.18.(12分)已知集合,.(1)当时,求AB;(2)设,,若是成立的充分不必要条件,求实数的取值范围.19.(12分)等差数列前n项和为,且(1)求通项公式;(2)记,求数列的前n项和20.(12分)已知函数,.(1)讨论函数的单调性;(2)若不等式在上恒成立,求实数的取值范围.21.(12分)已知函数.(1)讨论的单调性;(2)若,当时,恒成立,求实数的取值范围.22.(10分)已知直线,抛物线.(1)与有公共点,求的取值范围;(2)是坐标原点,过的焦点且与交于两点,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意可得,令,可得,再由三角形的面积公式,解方程可得,,即可得到所求椭圆的方程【详解】由题意可得,即,即有,令,则,可得,则,即,解得,,∴椭圆的方程为故选:A2、B【解析】首先由点的坐标满足圆的方程来确定点在圆上,然后求出过点的圆的切线方程,最后由两直线的垂直关系转化为斜率关系求解.【详解】由题知,圆的圆心,半径.因为,所以点在圆上,所以过点的圆的切线与直线垂直,设切线的斜率,则有,即,解得.因为直线与切线垂直,所以,解得.故选:B.3、A【解析】由两直线垂直可得出关于实数的等式,即可解得实数的值.【详解】因为,则,解得或.故选:A.4、B【解析】对求导,取得函数在上有极值的等价条件,再根据充分条件和必要条件的定义进行判断即可【详解】解:,则,令,可得,当时,,当时,,即在上单调递减,在上单调递增,所以,函数在处取得极小值,若函数在上有极值,则,,因为,但是由推不出,因此是函数在上有极值的必要不充分条件故选:B5、B【解析】不妨设点为第一象限的交点,结合椭圆与双曲线的定义得到,进而结合余弦定理得到,即,令然后结合三角函数即可求出结果.【详解】不妨设点为第一象限的交点,则由椭圆的定义可得,由双曲线的定义可得,所以,因此,即,所以,即,令因此,其中,所以当时,有最大值,最大值为,故选:B.【点睛】一、椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)二、双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)6、C【解析】由空间中关于坐标轴对称点坐标的特征可直接得到结果.【详解】关于轴对称的点的坐标不变,坐标变为相反数,关于轴对称的点为.故选:C.7、D【解析】利用复数除法运算和复数相等可用表示出,进而得到之间关系.【详解】,,,则.故选:D.8、C【解析】按照分层抽样的定义进行抽取.【详解】按照分层抽样的定义有,粮食类:植物油类:动物性食品类:果蔬类=4:1:3:2,抽20个出来,则粮食类8个,植物油类2个,动物性食品类6个,果蔬类4个,则抽取的植物油类与果蔬类食品种数之和是6个.故选:C.9、B【解析】由题意,求出内切圆的半径和圆心坐标,设,则,由表示内切圆上的动点P到定点的距离的平方,从而即可求解最小值.【详解】解:因为直线分别交坐标轴于A,B两点,所以设,则,因为,所以三角形OAB的内切圆半径,内切圆圆心为,所以内切圆的方程为,设,则,因为表示内切圆上的动点P到定点的距离的平方,且在内切圆内,所以,所以,,即的最小值为18,故选:B.10、B【解析】对于A、B:由棱柱的定义直接判断;对于C:由正三棱锥的侧棱长和底面边长不一定相等,即可判断;对于D:由球的表面不能展开成平面图形即可判断【详解】对于A:棱柱最少有5个面,则A错误;对于B:棱柱的所有侧面都是平行四边形,则B正确;对于C:正三棱锥的侧棱长和底面边长不一定相等,则C错误;对于D:球的表面不能展开成平面图形,则D错误故选:B11、D【解析】的否定是,的否定是,的否定是.故选D【考点】全称命题与特称命题的否定【方法点睛】全称命题的否定是特称命题,特称命题的否定是全称命题.对含有存在(全称)量词的命题进行否定需要两步操作:①将存在(全称)量词改成全称(存在)量词;②将结论加以否定12、A【解析】根据题意可得,圆心到直线的距离等于,即,求得,所以A选项是正确的.【点睛】判断直线与圆的位置关系的常见方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中常用的是几何法,点与圆的位置关系法适用于动直线问题二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】设出,根据条件推出在圆上运动,根据题意要使双曲线和圆有交点,则得答案.【详解】设点,由得:,所以,化简得:,即满足条件的点在圆上运动,又点存在于上,故双曲线与圆有交点,则,即实数a的最大值为2,故答案为:214、(1)在单调递增,单调递减;(2)详见解析.【解析】(1)求得,利用和即可求得函数的单调性区间;(2)求得函数的解析式,求,对的情况进行分类讨论得到函数有极大值的情形,再结合极大值点的定义进行替换、即可求解.【详解】(1)由题意,函数,则,当时,令,所以函数单调递增;当时,令,即,解得或,令,即,解得,所以函数在区间上单调递增,在区间中单调递减,当时,令,即,解得或,令,即,解得,所以函数在单调递增,在单调递减.(2)由函数,则,令,可得令,解得,当时.,函数在单调递增,此时,所以,函数在上单调递增,此时不存在极大值,当时,令解得,令,解得,所以上单调递减,在上单调递增,因为在上存在极大值,所以,解得,因为,易证明,存在时,,存在使得,当在区间上单调递增,在区间单调递减,所以当时,函数取得极大值,即,,由,所以【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于此类问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题15、【解析】由导数得出,再求.【详解】∵,∴,,解得,,,故答案为:.16、或【解析】先求正方形边长的规律,再求三角形面积的规律,从而就可以求和了,再解不等式即可求解.【详解】由题意,由外到内依次各正方形的边长分别为,则,,……,,于是数列是以4为首项,为公比的等比数列,则.由题意可得:,即……,于是.,故解得或.故答案为:或三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】(1)解不含参数的一元二次不等式即可求出结果;(2)二次函数的恒成立问题需要对二次项系数是否为0进行分类讨论,即可求出结果.【详解】(1)当时,,即,解得或,所以,解集为或.(2)因为在上恒成立,①当时,恒成立;②当时,,解得,综上,的取值范围为.18、(1);(2).【解析】(1)由,解得范围,可得,由可得:,解得.即可得出(2)由,解得.根据是成立的必要条件,利用包含关系列不等式即可得出实数的取值范围【详解】(1)由,解得,可得:,可得:,化为:,解得,所以=.(2)q是p成立的充分不必要条件,所以集合B是集合A的真子集.由,解得,又集合A=,所以或解得0≤a≤2,即实数a的取值范围是.【点睛】本题考查了简易逻辑的判定方法、集合之间的关系、不等式的解法,考查了推理能力与计算能力,属于基础题19、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件求,利用等差数列的通项公式可求得数列的通项公式.(2)求得,利用裂项相消法即可求得.【小问1详解】设等差数列的公差为,由,解得,所以,故数列的通项公式;【小问2详解】由(1)得:,所以,所以.20、(1)时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2).【解析】(1)对求导得到,分和进行讨论,判断出的正负,从而得到的单调性;(2)设函数,分和进行讨论,根据的单调性和零点,得到答案.【详解】解:(1)函数定义域是,,当时,,函数在单调递增,无减区间;当时,令,得到,即,所以,,单调递增,,,单调递减,综上所述,时,函数在单调递增,无减区间;时,函数在单调递增,在单调递减.(2)由已知在恒成立,令,,可得,则,所以在递增,所以,①当时,,在递增,所以成立,符合题意.②当时,,当时,,∴,使,即时,在递减,,不符合题意.综上得【点睛】本题考查利用导数讨论函数的单调性,根据导数解决不等式恒成立问题,属于中档题.21、(1)答案见解析;(2).【解析】(1)求得,分、两种情况讨论,分析导数的符号变化,由此可得出函数的单调递增区间和递减区间;(2)利用参变量分离法可得出对任意的恒成立,构造函数,其中,利用导数求出函数在上的最小值,由此可求得实数的取值范围.【小问1详解】解:函数的定义域为,.因为,由,可得.①当时,由可得,由可得.此时,函数的单调递减区间为,单调递增区间为;②当时,由可得,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年嘉禾县事业单位公开招聘引进高层次人才和急需紧缺人才备考题库及1套完整答案详解
- 2026年国家电投集团内蒙古新能源有限公司招聘备考题库及参考答案详解
- 2026年仙游法院招聘备考题库及一套参考答案详解
- 2026年北京中医医院派遣制职工招聘10人备考题库及1套完整答案详解
- 2026年大连理工大学化工学院刘家旭团队科研助理招聘备考题库(自聘)附答案详解
- 2026年广东广晟稀有金属光电新材料有限公司招聘备考题库带答案详解
- 2026年北京华运交通咨询有限公司招聘备考题库及完整答案详解一套
- 2026年德阳市第六人民医院医辅岗位招聘备考题库有答案详解
- 2026年德州爱瑞康医院招聘备考题库及1套完整答案详解
- 2026年佛山市顺德区北滘镇承德小学临聘教师招聘备考题库及答案详解参考
- 酒店运营经理年终总结
- 华润燃气安全培训
- 包钢集团历年笔试题库及答案
- 高校科研经费财会监督机制的优化路径与实证研究
- 高中物理化学生物专题复习资料
- 学堂在线 雨课堂 学堂云 信息素养-学术研究的必修课 章节测试答案
- 市政工程施工组织资源配备计划
- 银行消防管理办法
- 奥沙利铂使用的健康宣教
- 矿山三级安全教育培训
- 人工耳蜗术后护理指南
评论
0/150
提交评论