版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省佛山市华南师范大学附中南海实验高级中学数学高二上期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数的个数为()A.48 B.36C.24 D.183.已知点在抛物线上,则点到抛物线焦点的距离为()A.1 B.2C.3 D.44.在各项都为正数的数列中,首项为数列的前项和,且,则()A. B.C. D.5.已知直线,,点是抛物线上一点,则点到直线和的距离之和的最小值为()A.2 B.C.3 D.6.设为等差数列的前项和,,,则A.-6 B.-4C.-2 D.27.在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和.若一个直角三角形的斜边长等于则这个直角三角形周长的最大值为()A. B.C. D.8.已知是两条不同的直线,是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件9.给出下列结论:①如果数据的平均数为3,方差为0.2,则的平均数和方差分别为14和1.8;②若两个变量的线性相关性越强,则相关系数r的值越接近于1.③对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为30.则正确的个数是().A.3 B.2C.1 D.010.双曲线的离心率是,则双曲线的渐近线方程是()A. B.C. D.11.已知数列满足,则()A. B.C. D.12.已知函数,若对任意,都有成立,则a的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知与所在平面垂直,且,,,点P、Q分别在线段BD、CD上,沿直线PQ将向上翻折,使D与A重合.则直线AP与平面ACQ所成角的正弦值为______14.已知抛物线C:,经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则______15.若直线与平行,则实数________.16.若,,都为正实数,,且,,成等比数列,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8%,且每年年底卖出100头牛,设牧场从今年起每年年初的计划存栏数依次为,,….(参考数据:,,.)(1)写出一个递推公式,表示与之间的关系;(2)将(1)中的递推关系表示成的形式,其中k,r为常数;(3)求的值(精确到1).18.(12分)已知函数.(1)讨论的单调性;(2)任意,恒成立,求的取值范围.19.(12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程中的实数;(2)根据回归方程预测当单价为10元时的销量.20.(12分)从①,②,③,这三个条件中任选一个,补充在下面问题中并作答:已知等差数列公差大于零,且前n项和为,,______,,求数列的前n项和.(注:如果选择多个条件分别解答,那么按照第一个解答计分)21.(12分)已知数列满足,数列为等差数列,,前4项和.(1)求数列,的通项公式;(2)求和:.22.(10分)已知点和圆.(1)求圆的圆心坐标和半径;(2)设为圆上的点,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】因但2、B【解析】直接利用乘法分步原理分三步计算即得解.【详解】从中选一个数字,有种方法;从中选两个数字,有种方法;组成无重复数字的三位数,有个.故选:B3、B【解析】先求出抛物线方程,焦点坐标,再用两点间距离公式进行求解.【详解】将代入抛物线中得:,解得:,所以抛物线方程为,焦点坐标为,所以点到抛物线焦点的距离为故选:B4、C【解析】当时,,故可以得到,因为,进而得到,所以是等比数列,进而求出【详解】由,得,得,又数列各项均为正数,且,∴,∴,即∴数列是首项,公比的等比数列,其前项和,得,故选:C.5、C【解析】由抛物线的定义可知点到直线和的距离之和的最小值即为焦点到直线的距离.【详解】解:由题意,抛物线的焦点为,准线为,所以根据抛物线的定义可得点到直线的距离等于,所以点到直线和的距离之和的最小值即为焦点到直线的距离,故选:C.6、A【解析】由已知得解得故选A考点:等差数列的通项公式和前项和公式7、C【解析】设直角三角形的两条直角边边长分别为,则,根据基本不等式求出的最大值后,可得三角形周长的最大值.【详解】设直角三角形的两条直角边边长分别为,则.因为,所以,所以,当且仅当时,等号成立.故这个直角三角形周长的最大值为故选:C8、B【解析】根据垂直关系的性质可判断.【详解】由题,,则或,若,则或或与相交,故充分性不成立;若,则必有,故必要性成立,所以“”是“”的必要不充分条件.故选:B.9、B【解析】对结论逐一判断【详解】对于①,则的平均数为,方差为,故①正确对于②,若两个变量的线性相关性越强,则相关系数r的绝对值越接近于1,故②错误对于③,对A、B、C三种个体按3:1:2的比例进行分层抽样调查,若抽取的A种个体有15个,则样本容量为,故③正确故正确结论为2个故选:B10、B【解析】利用双曲线的离心率,以及渐近线中,关系,结合找关系即可【详解】解:,又因为在双曲线中,,所以,故,所以双曲线的渐近线方程为,故选:B11、D【解析】根据给定条件求出数列的通项公式,再利用裂项相消法即可计算作答.【详解】因,则,所以,所以.故选:D12、C【解析】求出函数的导数,再对给定不等式等价变形,分离参数借助均值不等式计算作答.【详解】对函数求导得:,,,则,,而,当且仅当,即时“=”,于是得,解得,所以a的取值范围为.故选:C【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用函数思想是解决问题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】取的中点,的中点,以所在直线为轴,以所在直线为轴,以所在直线为轴,建立空间直角坐标系,设,根据求出,再由空间向量的数量积即可求解.【详解】取的中点,的中点,如图以所在直线为轴,以所在直线为轴,以所在直线为轴,建立空间直角坐标系,不妨设,则,,,由,即,解得,所以,故,设为平面ACQ的一个法向量,因为,,由,即,所以,设直线AP与平面ACQ所成角为,则.故答案为:14、9【解析】过A、、作准线的垂线且分别交准线于点、、,根据抛物线的定义可知,由梯形的中位线的性质得出,进而可求出的结果.【详解】由抛物线,可知,则,所以抛物线的焦点坐标为,如图,过点A作垂直于准线交准线于,过点作垂直于准线交准线于,过点作垂直于准线交准线于,由抛物线的定义可得,再根据为线段的中点,而四边形为梯形,由梯形的中位线可知,则,所以.故答案为:9.15、【解析】根据两直线平行可得出关于实数的等式与不等式,即可解得实数的值.【详解】因为,则,解得.故答案为:.16、##【解析】利用等比中项及条件可得,进而可得,再利用基本不等式即得.【详解】∵,,都为正实数,,,成等比数列,∴,又,∴,即,∴,∴,当且仅当,即取等号.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)10626【解析】(1)根据题意,建立递推关系即可;(2)利用待定系数法求解得.(3)利用等比数列求和公式,结合已知数据求解即可.【小问1详解】解:因为某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8%,且每年年底卖出100头牛,所以,且.【小问2详解】解:将化成,因为所以比较的系数,可得,解得.所以(1)中的递推公式可以化为.【小问3详解】解:由(2)可知,数列是以为首项,1.08为公比的等比数列,则.所以.18、(1)的递增区间为,递减区间为(2)【解析】(1)先求出函数的导数,令、解出对应的解集,结合定义域即可得到函数的单调区间;(2)将不等式转化为,令,利用导数讨论函数分别在、时的单调性,进而求出函数的最值,即可得出答案.【小问1详解】函数的定义域为,又当时,,当时,故的递增区间为,递减区间为.【小问2详解】,即,令,有,,若,在上恒成立.则在上为减函数,所以有若,由,可得,则在上增,所以在上存在使得,与题意不符合综上所述,.19、(1)250.(2)50(件).【解析】(1)数据的平均值一定在回归直线上;(2)将x=10代入回归方程即可.【小问1详解】由表中数据可得,,,代入,解得.【小问2详解】由(1)得,故单价为10元时,.当单价为10元时销量为50件.20、;【解析】将条件①②③转化为的形式,列方程组,并求解,写出的通项公式,从而表示出,利用裂项相消法求和.【详解】选①:设等差数列首项为,公差为,因为,,所以,所以,所以,所以选②:设等差数列首项为,公差为,因为,,所以,所以,所以,所以选③:设等差数列首项为,公差为,因为,,所以,所以,所以,所以【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和(2)错位相减:用于等差数列与等比数列的积数列的求和(3)分组求和:用于若干个等差或等比数列的和或差数列的求和21、(1),;(2).【解析】(1)根据等比数列的定义,结合等差数列的基本量,即可容易求得数列,的通项公式;(2)根据(1)中所求,构造数列,证明其为等比数列,利用等比数列的前项和即可求得结果.【小问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年山西大专任教师招聘116人备考题库及参考答案详解一套
- 2026年天津市天锻压力机有限公司招聘备考题库及参考答案详解1套
- 2026年东营市东凯实验学校招聘数学教师备考题库附答案详解
- 2026年海南体育职业技术学院单招职业倾向性测试模拟测试卷必考题
- 2026年哈尔滨市宣庆中学校公开招聘临聘教师备考题库及参考答案详解
- 2026年河北司法警官职业学院单招职业倾向性考试题库新版
- 2026年成都师范附属小学员额教师招聘补招备考题库及答案详解一套
- 2026年吉林省一地事业单位招聘117人备考题库完整参考答案详解
- 2026年福州外语外贸学院单招职业倾向性测试题库新版
- 2026年中国雄安集团基础建设有限公司招聘备考题库及1套参考答案详解
- 4第四章 入侵检测流程
- 钯金的选矿工艺
- 人工智能在金融策略中的应用
- JCT640-2010 顶进施工法用钢筋混凝土排水管
- 赤壁赋的议论文800字(实用8篇)
- 高压燃气管道施工方案
- 输变电工程技术标书【实用文档】doc
- 南部山区仲宫街道乡村建设规划一张表
- 加工中心点检表
- GB/T 2652-1989焊缝及熔敷金属拉伸试验方法
- GB/T 25630-2010透平压缩机性能试验规程
评论
0/150
提交评论