2026届郑州第一中学高二数学第一学期期末复习检测试题含解析_第1页
2026届郑州第一中学高二数学第一学期期末复习检测试题含解析_第2页
2026届郑州第一中学高二数学第一学期期末复习检测试题含解析_第3页
2026届郑州第一中学高二数学第一学期期末复习检测试题含解析_第4页
2026届郑州第一中学高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届郑州第一中学高二数学第一学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆与圆的位置关系为()A.外切 B.内切C.相交 D.相离2.与空间向量共线的一个向量的坐标是()A. B.C. D.3.若1,m,9三个数成等比数列,则圆锥曲线的离心率是()A.或 B.或2C.或 D.或24.已知,是圆上的两点,是直线上一点,若存在点,,,使得,则实数的取值范围是()A. B.C. D.5.已知一个圆锥体积为,任取该圆锥的两条母线a,b,若a,b所成角的最大值为,则该圆锥的侧面积为()A. B.C. D.6.已知直线,若异面,,则的位置关系是()A.异面 B.相交C.平行或异面 D.相交或异面7.天文学家卡西尼在研究土星及其卫星的运行规律时发现:同一平面内到两个定点的距离之积为常数的点的轨迹是卡西尼卵形线.在平面直角坐标系中,设定点为,,,点O为坐标原点,动点满足(且为常数),化简得曲线E:.当,时,关于曲线E有下列四个命题:①曲线E既是轴对称图形,又是中心对称图形;②的最大值为;③的最小值为;④面积的最大值为.其中,正确命题的个数为()A.1个 B.2个C.3个 D.4个8.若直线与平行,则实数m等于()A.0 B.1C.4 D.0或49.若方程表示双曲线,则的取值范围是()A.或 B.C.或 D.10.方程所表示的曲线为()A.射线 B.直线C.射线或直线 D.无法确定11.已知直线:恒过点,过点作直线与圆:相交于A,B两点,则的最小值为()A. B.2C.4 D.12.数学家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知的三个顶点分别为,,,则的欧拉线方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.命题“,”的否定是____________.14.半径为R的圆外接于,且,若,则面积的最大值为________.15.正三棱柱的底面边长和高均为2,点为侧棱的中点,连接,,则点到平面的距离为______.16.已知、是椭圆的两个焦点,点在椭圆上,且,,则椭圆离心率是___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角A,B,C所对的边分别为a,b,c,且(1)求B;(2)若,求的面积的最大值18.(12分)已知等比数列的前n项和为,,(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个等差数列,记插入的这n个数之和为,求数列的前n项和19.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值20.(12分)如图,在空间四边形中,分别是的中点,分别在上,且(1)求证:四点共面;(2)设与交于点,求证:三点共线.21.(12分)已知函数(1)当时,求的单调性;(2)若存在两个极值点,试证明:22.(10分)已知正项等比数列的前项和为,满足,.记.(1)求数列的通项公式;(2)设数列前项和,求使得不等式成立的的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据两圆半径和、差、圆心距之间的大小关系进行判断即可.【详解】由,该圆的圆心为,半径为.圆圆心为,半径为,因为两圆的圆心距为,两圆的半径和为,所以两圆的半径和等于两圆的圆心距,因此两圆相外切,故选:A2、C【解析】根据空间向量共线的坐标表示即可得出结果.【详解】.故选:C.3、D【解析】运用等比数列的性质可得,再讨论,,求出曲线的,,由离心率公式计算即可得到【详解】三个数1,,9成等比数列,则,解得,,当时,曲线为椭圆,则;当时,曲线为为双曲线,则离心率故选:4、B【解析】确定在以为直径的圆上,,根据均值不等式得到圆上的点到的最大距离为,得到,解得答案.【详解】,故在以为直径的圆上,设中点为,则,圆上的点到的最大距离为,,当时等号成立.直线到原点的距离为,故.故选:B.5、B【解析】设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,根据体积公式计算可得,利用扇形的面积公式计算即可求得结果.【详解】如图,设圆锥的母线长为R,底面半径长为r,由题可知圆锥的轴截面是等边三角形,所以,圆锥的体积,解得,所以该圆锥的侧面积为.故选:B6、D【解析】以正方体为载体说明即可.【详解】如下图所示的正方体:和是异面直线,,;和是异面直线,,与是异面直线.所以两直线与是异面直线,,则的位置关系是相交或异面.故选:D7、D【解析】①:根据轴对称图形、中心对称图形的方程特征进行判断即可;②:结合两点间距离公式、曲线方程特征进行判断即可;③:根据卡西尼卵形线的定义,结合基本不等式进行判断即可;④:根据方程特征,结合三角形面积公式进行判断即可.【详解】当,时,.①:因为以代方程不变,以代方程不变,同时代,以代方程不变,所以曲线E既是轴对称图形,又是中心对称图形,因此本命题正确;②:由,所以有,所以,当时成立,因此本命题正确;③:因为,所以,当且仅当时,取等号,因此本命题正确;④:,因为,所以,的面积为,因此本命题正确,故选:D【点睛】关键点睛:利用方程特征进行求解判断是解题的关键.8、A【解析】由两条直线平行的充要条件即可求解.【详解】解:因为直线与平行,所以,解得,故选:A.9、A【解析】由和的分母异号可得【详解】由题意,解得或故选:A10、C【解析】将方程化为或,由此可得所求曲线.【详解】由得:或,即或,方程所表示的曲线为射线或直线.故选:C.11、A【解析】根据将最小值问题转化为d取得最大值问题,然后结合图形可解.【详解】将,变形为,故直线恒过点,圆心,半径,已知点P在圆内,过点作直线与圆相交于A,两点,记圆心到直线的距离为d,则,所以当d取得最大值时,有最小值,结合图形易知,当直线与线段垂直的时候,d取得最大值,即取得最小值,此时,所以.故选:A.12、B【解析】根据的三个顶点坐标,先求解出重心的坐标,然后再根据三个点坐标求解任意两条垂直平分线的方程,联立方程,即可算出外心的坐标,最后根据重心和外心的坐标使用点斜式写出直线方程.【详解】由题意可得的重心为.因为,,所以线段的垂直平分线的方程为.因为,,所以直线的斜率,线段的中点坐标为,则线段的垂直平分线的方程为.联立,解得,则的外心坐标为,故的欧拉线方程是,即故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、,【解析】根据全称命题量词的否定即可得出结果.【详解】命题“”的否定是“,”故答案为:14、【解析】利用正弦定理将已知条件转化为边之间的关系,然后用余弦定理求得C;利用三角形面积公式,结合两角差的正弦函数公式和二倍角公式得,再利用辅助角公式得,最后利用函数的值域计算得结论.【详解】因为所以由正弦定理得:,即,所以由余弦定理可得:,又,故.由正弦定理得:,,所以,所以当时,S最大,.若,则面积的最大值为.故答案为:.【点睛】本题考查了两角和与差的三角函数公式,二倍角公式及应用,正弦定理,余弦定理,三角形面积公式,函数的图象与性质,属于中档题.15、【解析】建立空间直角坐标系,利用空间向量求点面距离的公式可以直接求出.【详解】如图,建立空间直角坐标系,为的中点,由已知,,,,,所以,,设平面的法向量为,,即:,取,得,,则点到平面的距离为.故答案为:.16、【解析】先由,根据椭圆的定义,求出,,再由余弦定理,根据,即可列式求出离心率.【详解】因为点在椭圆上,所以,又,所以,因,在中,由,根据余弦定理可得,解得(负值舍去)故答案为:.【点睛】本题主要考查求椭圆的离心率,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1):根据正弦定理由边化角和三角正弦和公式即可求解;(2):根据余弦定理和均值不等式求得最大值,利用面积公式即可求解【小问1详解】由正弦定理及,得,∵,∵,∴【小问2详解】由余弦定理,∴,∴,当且仅当时等号成立,∴的面积的最大值为18、(1);(2)【解析】(1)设等比数列公比为q,利用与关系可求q,在中令n=1可求;(2)根据等差数列前n项和公式可求,分析{}的通项公式,利用错位相减法求其前n项和.【小问1详解】设等比数列的公比为q,由己知,可得,两式相减可得,即,整理得,可知,已知,令,得,即,解得,故等比数列的通项公式为;【小问2详解】由题意知在与之间插入n个数,这个数组成以为首项的等差数列,∴,设{}前n项和为,①①×3:②①-②:19、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点建立如图所示的空间直角坐标系,则有,,,,,,∴,设面的一个法向量为,则由令,则,又因为面,取作为面的一个法向量,设二面角为,∴,∴,因此二面角的正弦值为20、(1)证明见解析;(2)证明见解析.【解析】(1)根据题意,利用中位线定理和线段成比例,先证明,进而证明问题;(2)先证明平面,平面,进而证明点P在两个平面的交线上,然后证得结论.【小问1详解】连接分别是的中点,.在中,.所以四点共面.【小问2详解】,所以,又平面平面,同理:,平面平面,为平面与平面的一个公共点.又平面平面,即三点共线.21、(1)答案见解析(2)证明见解析【解析】(1)依据导函数判定函数的单调性即可;(2)等价转化和构造新函数在不等式证明中可以起到关键性作用.【小问1详解】的定义域为,当时,令得,当时,;当时,所以在和上单调递减,在上单调递增.【小问2详解】,存在两个极值点,则有二正根,由,得由于的两个极值点满足,所以,不妨设,则由于,所以等价于设函数,在单调递减,又,从而所以,故.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论