版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖北鄂州市高二上数学期末调研模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A. B.C. D.2.已知A(3,2),点F为抛物线的焦点,点P在抛物线上移动,为使取得最小值,则点P的坐标为()A.(0,0) B.(2,2)C. D.3.为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:℃)制成如图所示的茎叶图(十位数字为茎,个位数字为叶).考虑以下结论:①甲地该月时的平均气温低于乙地该月时的平均气温;②甲地该月时的平均气温高于乙地该月时的平均气温;③甲地该月时的气温的标准差小于乙地该月时的气温的标准差;④甲地该月时的气温的标准差大于乙地该月时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.①③ B.①④C.②③ D.②④4.等比数列满足,,则()A.11 B.C.9 D.5.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数中相同的是()A.极差 B.方差C.平均数 D.中位数6.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.7.直线是双曲线的一条渐近线,,分别是双曲线左、右焦点,P是双曲线上一点,且,则()A.2 B.6C.8 D.108.若圆上恰有2个点到直线的距离为1,则实数的取值范围为()A B.C. D.9.在棱长为4的正方体中,为的中点,点P在正方体各棱及表面上运动且满足,则点P轨迹围成的图形的面积为()A. B.C. D.10.已知,,,则,,的大小关系是A. B.C. D.11.是等差数列,且,,则的值()A. B.C. D.12.直线过点且与双曲线仅有一个公共点,则这样的直线有()A.1条 B.2条C.3条 D.4条二、填空题:本题共4小题,每小题5分,共20分。13.函数的图象在处的切线方程为,则___________.14.在某项测量中,测量结果ξ服从正态分布(),若ξ在内取值的概率为0.4,则ξ在内取值的概率为______15.已知双曲线:的右焦点为,过点向双曲线的一条渐近线引垂线,垂足为,交另一条渐近线于,若,则双曲线的渐近线方程为__________16.在中,,是线段上的点,,若的面积为,当取到最大值时,___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程中的实数;(2)根据回归方程预测当单价为10元时的销量.18.(12分)已知等比数列的公比,且,的等差中项为,.(1)求数列的通项公式;(2)设,求数列的前项和.19.(12分)已知在数列中,,且.(1)求,,并证明数列是等比数列;(2)求的通项公式及前n项和.20.(12分)在平面直角坐标系内,已知的三个顶点坐标分别为(1)求边的垂直平分线所在的直线的方程;(2)若面积为5,求点的坐标21.(12分)已知等差数列的前项和为,满足,.(1)求数列的通项公式与前项和;(2)求的值.22.(10分)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y关于x的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品非原料成本;(3)根据企业长期研究表明,非原料成本y服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,若非原料成本y在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.1151.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】解:,设F1F2=2c,∵△F2AB是等边三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故选D2、B【解析】设点P到准线的距离为,根据抛物线的定义可知,即可根据点到直线的距离最短求出【详解】如图所示:设点P到准线的距离为,准线方程为,所以,当且仅当点为与抛物线的交点时,取得最小值,此时点P的坐标为故选:B3、B【解析】根据茎叶图数据求出平均数及标准差即可【详解】由茎叶图知甲地该月时的平均气温为,标准差为由茎叶图知乙地该月时的平均气温为,标准差为则甲地该月14时的平均气温低于乙地该月14时的平均气温,故①正确,乙平均气温的标准差小于甲的标准差,故④正确,故正确的是①④,故选:B4、B【解析】由已知结合等比数列的性质即可求解.【详解】由数列是等比数列,得:,故选:B5、C【解析】根据茎叶图中数据的波动情况,可直接判断方差不同;根据茎叶图中的数据,分别计算极差、中位数、平均数,即可得出结果.【详解】由茎叶图可得:甲的数据更集中,乙的数据较分散,所以甲与乙的方差不同;甲的极差为;乙的极差为,所以甲与乙的极差不同;甲的中位数为,乙的中位数为,所以中位数不同;甲的平均数为,乙的平均数为,所以甲、乙的平均数相同;故选:C.6、A【解析】由题意可知,对任意的恒成立,可得出对任意的恒成立,利用基本不等式可求得实数的取值范围.【详解】因为,则,由题意可知,对任意的恒成立,所以,对任意的恒成立,由基本不等式可得,当且仅当时,等号成立,所以,.故选:A.7、C【解析】根据渐近线可求出a,再由双曲线定义可求解.【详解】因为直线是双曲线的一条渐近线,所以,,又或,或(舍去),故选:C8、A【解析】求得圆心到直线的距离,根据题意列出的不等关系式,即可求得的范围.【详解】因为圆心到直线的距离,故要满足题意,只需,解得.故选:A.9、A【解析】构造辅助线,找到点P轨迹围成的图形为长方形,从而求出面积.【详解】取的中点E,的中点F,连接BE,EF,AF,则由于为的中点,可得,所以∠CBE=∠ECN,从而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因为BEEF=E,所以CN⊥平面ABEF,所以点P轨迹围成的图形为矩形ABEF,又,所以矩形ABEF面积为.故选:A10、B【解析】若对数式的底相同,直接利用对数函数的性质判断即可,若底不同,则根据结构构造函数,利用函数的单调性判断大小【详解】对于的大小:,,明显;对于的大小:构造函数,则,当时,在上单调递增,当时,在上单调递减,即对于的大小:,,,故选B【点睛】将两两变成结构相同的对数形式,然后利用对数函数的性质判断,对于结构类似的,可以通过构造函数来来比较大小,此题是一道中等难度的题目11、B【解析】根据等差数列的性质计算【详解】因为是等差数列,所以,,也成等差数列,所以故选:B12、C【解析】根据直线的斜率存在与不存在,分类讨论,结合双曲线的渐近线的性质,即可求解.【详解】当直线的斜率不存在时,直线过双曲线的右顶点,方程为,满足题意;当直线的斜率存在时,若直线与两渐近线平行,也能满足与双曲线有且仅有一个公共点.综上可得,满足条件的直线共有3条.故选:C.【点睛】本题主要考查了直线与双曲线的位置关系,以及双曲线的渐近线的性质,其中解答中忽视斜率不存在的情况是解答的一个易错点,着重考查了分析问题和解答问题的能力,以及分类讨论思想的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据导数的几何意义可得,根据切点在切线上可得.【详解】因为切线的斜率为,所以,又切点在切线上,所以,所以,所以.故答案为:.14、4##【解析】根据正态分布曲线的对称性求解【详解】因为ξ服从正态分布(),即正态分布曲线的对称轴为,根据正态分布曲线的对称性,可知ξ在与取值的概率相同,所以ξ在内取值的概率为0.4.故答案为:0.415、【解析】由题意得双曲线的右焦点F(c,0),设一渐近线OM的方程为,则另一渐近线ON的方程为.设,∵,∴,∴,解得∴点M的坐标为,又,∴,整理得,∴双曲线的渐近线方程为答案:点睛:(1)已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程就是双曲线的两条渐近线方程(2)求双曲线的渐进线方程的关键是求出的关系,并根据焦点的位置确定出渐近线的形式,并进一步得到其方程16、【解析】由三角形面积公式得出,设,由可得出,利用基本不等式可求出的值,利用等号成立可得出、的值,再利用余弦利用可得出的值.【详解】由题意可得,解得,设,则,可得,由基本不等式可得,当且仅当时,取得最大值,,,由余弦定理得,解得.故答案为【点睛】本题考查余弦定理解三角形,同时也考查了三角形的面积公式以及利用基本不等式求最值,在利用基本不等式求最值时,需要结合已知条件得出定值条件,同时要注意等号成立的条件,考查分析问题和解决问题的能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)250.(2)50(件).【解析】(1)数据的平均值一定在回归直线上;(2)将x=10代入回归方程即可.【小问1详解】由表中数据可得,,,代入,解得.【小问2详解】由(1)得,故单价为10元时,.当单价为10元时销量为50件.18、(1);(2)【解析】(1)将题目的条件写成的形式并求解,写出等比等比数列通项公式;(2)利用错位相减法求和.小问1详解】由题意可得,,∴,∵,∴,∴数列的通项公式为.【小问2详解】,∴①,②,①-②可得,∴.19、(1),,证明见解析(2),【解析】(1)根据递推关系求出,,对递推公式变形,即可得证;(2)结合(1)求得通项公式,分组求和.【小问1详解】因为,且所以,,∵,∴,∵,∴,且,∴数列是等比数列.【小问2详解】由(1)可知是以为首项,以3为公比的等比数列,即,即;.20、(1);(2)或【解析】(1)由题意直线的斜率公式,两直线垂直的性质,求出的斜率,再用点斜式求直线的方程(2)根据面积为5,求得点到直线的距离,再利用点到直线的距离公式,求得的值【详解】解:(1),,的中点的坐标为,又设边的垂直平分线所在的直线的斜率为则,可得的方程为,即边的垂直平分线所在的直线的方程(2)边所在的直线方程为设边上的高为即点到直线的距离为且解得解得或,点的坐标为或21、(1),;(2).【解析】(1)设出等差数列的公差,借助前项和公式列式计算作答.(2)由(1)的结论借助裂项相消去求解作答.【小问1详解】设等差数列的公差为,因,,则,解得,于是得,,所以数列的通项公式为,前项和.【小问2详解】由(1)知,,所以.22、(1)(2)反比例函数模型拟合效果更好,产量为10千件时每件产品的非原料成本约为11元,(3)见解析【解析】(1)令,则可转化为,求出样本中心,回归方程的斜率,转化求回归方程即可,(2)求出与的相关系数,通过比较,可得用反比例
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年成都传媒集团人力资源服务中心关于(高级)项目经理岗位的招聘备考题库带答案详解
- 2026年中远海运(青岛)有限公司招聘备考题库完整答案详解
- 2026年扬州市新华中学公开招聘教师6人备考题库带答案详解
- 2026年中国能源建设集团山西电力建设第三有限公司招聘备考题库及一套完整答案详解
- 2026年北京十一实验中学招聘备考题库附答案详解
- 2026年三明空港物业管理有限公司招聘备考题库及一套参考答案详解
- 2026年张家口市沙岭子医院招聘备考题库含答案详解
- 2026年高校实验室管理中心面试题与答案解析
- 2026年潍坊社工笔试重点知识练习题集含解析
- 财务知识学习
- 4第四章 入侵检测流程
- 钯金的选矿工艺
- 人工智能在金融策略中的应用
- JCT640-2010 顶进施工法用钢筋混凝土排水管
- 赤壁赋的议论文800字(实用8篇)
- 高压燃气管道施工方案
- 输变电工程技术标书【实用文档】doc
- 南部山区仲宫街道乡村建设规划一张表
- 加工中心点检表
- GB/T 2652-1989焊缝及熔敷金属拉伸试验方法
- GB/T 25630-2010透平压缩机性能试验规程
评论
0/150
提交评论