版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市嘉定区封浜高级中学2026届高一数学第一学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若均大于零,且,则的最小值为()A. B.C. D.2.设集合,则()A. B.C. D.3.已知函数在上是增函数,则的取值范围是()A., B.,C., D.,4.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:)与时间t(单位:h)间的关系为,其中,k是常数.已知当时,污染物含量降为过滤前的,那么()A. B.C. D.5.设是定义在上的奇函数,且当时,,则()A. B.C. D.6.在内,不等式解集是()A. B.C. D.7.若,则()A. B.C. D.8.下列各角中,与终边相同的角为()A. B.160°C. D.360°9.设全集,集合,,则=()A. B.C. D.10.已知函数,则该函数的单调递减区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系xOy中,角α与角β均以x轴的非负半轴为始边,它们的终边关于坐标原点对称.若sinα=112.设,关于的方程有两实数根,,且,则实数的取值范围是___________.13.已知函数的零点为1,则实数a的值为______14.函数f(x)=cos的图象向右平移个单位长度,得到函数的图象,则函数的解析式为_______,函数的值域是________15.意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的“悬链线问题”.双曲余弦函数,就是一种特殊的悬链线函数,其函数表达式为,相应的双曲正弦函数的表达式为.设函数,若实数m满足不等式,则m的取值范围为___________.16.若将函数的图像向左平移个单位后所得图像关于轴对称,则的最小值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求的最小正周期;(2)将的图像上的各点的横坐标伸长为原来的2倍,纵坐标不变,再将所得图像向右平移个单位,得到函数的图像,求在上的单调区间和最值.18.已知,.(1)求的值;(2)求的值.19.设,函数在上单调递减.(1)求;(2)若函数在区间上有且只有一个零点,求实数k的取值范围.20.已知函数()用五点法作出在一个周期上的简图.(按答题卡上所给位置作答)()求在时的值域21.(1)已知,求的值.(2)已知,是第四象限角,,,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题可得,利用基本不等式可求得.【详解】均大于零,且,,当且仅当,即时等号成立,故的最小值为.故选:D.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2、C【解析】利用集合并集的定义,即可求出.【详解】集合,.故选:.【点睛】本题主要考查的是集合的并集的运算,是基础题.3、D【解析】先根据题意建立不等式组,再求解出,最后给出选项即可.【详解】解:因为函数在上是增函数,所以,解得,则故选:D.【点睛】本题考查利用分段函数的单调性求参数范围,是基础题4、C【解析】根据题意列出指数式方程,利用指数与对数运算公式求出的值.【详解】由题意得:,即,两边取对数,,解得:.故选:C5、D【解析】根据奇函数的性质求函数值即可.【详解】故选:D6、C【解析】根据正弦函数的图象和性质,即可得到结论【详解】解:在[0,2π]内,若sinx,则x,即不等式的解集为(,),故选:C【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题7、A【解析】令,则,所以,由诱导公式可得结果.【详解】令,则,且,所以.故选:A.8、C【解析】由终边相同角的定义判断【详解】与终边相同角为,而时,,其它选项都不存在整数,使之成立故选:C9、B【解析】根据题意和补集的运算可得,利用交集的概念和运算即可得出结果.【详解】由题意知,所以.故选:B10、C【解析】先用诱导公式化简,再求单调递减区间.【详解】要求单调递减区间,只需,.故选:C.【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于或的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式二、填空题:本大题共6小题,每小题5分,共30分。11、-14【解析】根据题意,利用同角三角函数的基本关系,再由诱导公式,可得答案.【详解】∵角α与角β的终边关于坐标原点对称,所以β=α+由诱导公式可得:sinβ=-故答案为:-12、【解析】结合一元二次方程根的分布的知识列不等式组,由此求得的取值范围.【详解】令,依题意关于的方程有两实数根,,且,所以,即,解得.故答案为:13、【解析】利用求得的值.【详解】由已知得,即,解得.故答案为:【点睛】本小题主要考查函数零点问题,属于基础题.14、①.②.【解析】由题意利用函数的图象变换规律求得的解析式,可得的解析式,再根据余弦函数的值域,二次函数的性质,求得的值域【详解】函数的图象向右平移个单位长度,得到函数的图象,函数,,故当时,取得最大值为;当时,取得最小值为,故的值域为,,故答案为:;,15、【解析】先判断为奇函数,且在R上为增函数,然后将转化为,从而有,进而可求出m的取值范围【详解】由题意可知,的定义域为R,因为,所以为奇函数.因为,且在R上为减函数,所以由复合函数的单调性可知在R上为增函数.又,所以,所以,解得.故答案为:.16、【解析】利用辅助角公式将函数化简,再根据三角函数的平移变换及余弦函数的性质计算可得;【详解】解:因,将的图像向左平移个单位,得到,又关于轴对称,所以,,所以,所以当时取最小值;故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解析】(1)整理函数的解析式可得,结合最小正周期公式可得其的最小正周期为;(2)由题意可得,结合函数的定义域可得函数的单调增区间为:,单调减区间为:,最大值为:,最小值为:.试题解析:(1)
,
所以最小正周期为;(2)由已知有,因为,所以,当,即时,g(x)单调递增,当即时,g(x)单调递减,所以g(x)的增区间为,减区间为,所以在上最大值为,最小值为.18、(1);(2).【解析】(1)利用诱导公式直接化简即可,然后弦化切;(2)由(1)知,,对齐次式进行弦化切求值.【详解】(1)∵而,∴∵,∴,∴,∴.(2)..【点睛】利用三角公式求三角函数值的关键:(1)角的范围的判断;(2)选择合适的公式进行化简求值19、(1);(2).【解析】(1)分析得到关于的不等式,解不等式即得解;(2)等价于函数与函数的图象在区间上有且只有一个交点,再对分类讨论得解.【小问1详解】解:因为,在上单调递减,所以,解得.又,且,解得.综上,.【小问2详解】解:由(1)知,所以.由于函数在区间上有且只有一个零点,等价于函数与函数的图象在区间上有且只有一个交点.①当即时,函数单调递增,,于是有,解得;②当即时,函数先增后减有最大值,于是有即,解得.故k的取值范围为.20、(1)见解析;(2)值域为.【解析】分析:(1)利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用,,,,描点作图即可;()当时,,可得,,从而可得结果.详解:(),,,,五点作图法的五点:,,,,()当时,,∴,此时,,即,,此时,,即,∴在时的值域为点睛:以三角恒等变换为手段,对三角函数及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国地质大学(北京)海南国际学院人才招聘备考题库(一)及1套参考答案详解
- 2026年中国科大物理学院劳务派遣岗位招聘备考题库及1套完整答案详解
- 2026年大安市太山镇卫生院招聘备考题库及一套完整答案详解
- 2026年中国稀土集团创新科技有限公司招聘备考题库及参考答案详解
- 2026年国投(雄安)先进电子制造产业创新有限公司招聘备考题库及参考答案详解1套
- 丽江2025年下半年云南丽江市中医医院第二次招聘编外人员4人笔试历年备考题库附带答案详解
- 中央2025年中国人口与发展研究中心招聘应届毕业生8人笔试历年典型考点题库附带答案详解
- 上海上海市特殊儿童康复中心工作人员招聘笔试历年典型考点题库附带答案详解
- 上海上海健康医学院2025年招聘28人(第二批)笔试历年典型考点题库附带答案详解
- 上海2025年上海市卫生健康技术评价中心上半年招聘16人笔试历年典型考点题库附带答案详解
- 人防平战转换课件
- 2025年军事理论知识竞赛题库及答案
- 2025年4月自考00612日本文学选读试题
- 2025至2030PA12T型行业发展趋势分析与未来投资战略咨询研究报告
- 精神科暗示治疗技术解析
- 2025年人工智能训练师(三级)职业技能鉴定理论考试题库(含答案)
- 智慧产业园仓储项目可行性研究报告-商业计划书
- 财务部门的年度目标与计划
- 消防管道拆除合同协议
- 四川省森林资源规划设计调查技术细则
- 银行外包服务管理应急预案
评论
0/150
提交评论