版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届云南省盐津县第三中学高二数学第一学期期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在三棱柱中,为的中点,若,,,则下列向量与相等的是()A. B.C. D.2.已知命题:,使;命题:,都有,则下列结论正确的是()A.命题“”是真命题: B.命题“”是假命题:C.命题“”是假命题: D.命题“”是假命题3.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定4.日常饮用水通常都是经过净化的,随若水纯净度的提高,所需净化费用不断增加.已知水净化到纯净度为时所需费用单位:元为那么净化到纯净度为时所需净化费用的瞬时变化率是()元/t.A. B.C. D.5.已知动圆M与直线y=2相切,且与定圆C:外切,求动圆圆心M的轨迹方程A. B.C. D.6.在正四面体中,棱长为2,且E是棱AB中点,则的值为A. B.1C. D.7.离心率为,长轴长为6的椭圆的标准方程是A. B.或C. D.或8.在中,、、所对的边分别为、、,若,,,则()A. B.C. D.9.将一个表面积为的球用一个正方体盒子装起来,则这个正方体盒子的最小体积为()A. B.C. D.10.已知命题p:,,则命题p的否定为()A., B.,C, D.,11.若数列对任意满足,下面选项中关于数列的说法正确的是()A.一定是等差数列B.一定是等比数列C.可以既是等差数列又是等比数列D.可以既不是等差数列又不是等比数列12.在复平面内,复数对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知正方形边长为,长方形中,,平面与平面互相垂直,是线段的中点,则异面直线与所成角的余弦值为______14.已知圆C:和点,若点N为圆C上一动点,点Q为平面上一点且,则Q点纵坐标的最大值为______15.若某几何体的三视图如图所示,则该几何体的体积是__________16.过抛物线的焦点的直线交抛物线于点、,且点的横坐标为,过点和抛物线顶点的直线交抛物线的准线于点,则的面积为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的方程为:.(1)求的值,使圆的周长最小;(2)过作直线,使与满足(1)中条件的圆相切,求的方程,并求切线段的长.18.(12分)已知椭圆C:,斜率为的直线l与椭圆C交于A、B两点且(1)求椭圆C的离心率;(2)求直线l方程19.(12分)如图,在三棱柱中,面ABC,,,D为BC的中点(1)求证:平面;(2)若F为中点,求与平面所成角的正弦值20.(12分)已知圆,直线(1)求证:直线与圆恒有两个交点;(2)设直线与圆的两个交点为、,求的取值范围21.(12分)已知:方程表示焦点在轴上的椭圆,:方程表示焦点在轴上的双曲线,其中.(1)若“”为真命题,求的取值范围:(2)若“”为假命题,“”为真命题,求的取值范围.22.(10分)已知在等差数列中,,(1)求的通项公式;(2)若,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用空间向量基本定理求解即可【详解】由于M是的中点,所以故选:A2、B【解析】根据正弦函数的性质判断命题为假命题,由判断命题为真命题,从而得出答案.【详解】因为的值域为,所以命题为假命题因为,所以命题为真命题则命题“”是假命题,命题“”是假命题,命题“”是真命题,命题“”是真命题故选:B3、C【解析】求出的值,结合大边对大角定理可得出结论.【详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.4、B【解析】由题意求出函数的导函数,然后令即可求解【详解】因为,所以,则,故选:5、D【解析】由题意动圆M与直线y=2相切,且与定圆C:外切∴动点M到C(0,-3)的距离与到直线y=3的距离相等由抛物线的定义知,点M的轨迹是以C(0,-3)为焦点,直线y=3为准线的抛物线故所求M的轨迹方程为考点:轨迹方程6、A【解析】根据题意,由正四面体的性质可得:,可得,由E是棱中点,可得,代入,利用数量积运算性质即可得出.【详解】如图所示由正四面体的性质可得:可得:是棱中点故选:【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.7、B【解析】试题解析:当焦点在x轴上:当焦点在y轴上:考点:本题考查椭圆的标准方程点评:解决本题的关键是焦点位置不同方程不同8、B【解析】利用正弦定理,以及大边对大角,结合正弦定理,即可求得.【详解】根据题意,由正弦定理,可得:,解得,故可得或,由,可得,故故选:B.9、C【解析】求出球的半径,要使这个正方形盒子的体积最小,则这个正方体正好是该球的外切正方体,所以正方体的棱长等于球的直径,从而可得出答案.【详解】解:设球的半径为,则,得,故该球的半径为11cm,若要使这个正方形盒子的体积最小,则这个正方体正好是该球的外切正方体,所以正方体的棱长等于球的直径,即22cm,所以这个正方体盒子的最小体积为.故选:C.10、A【解析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p:,,故命题p的否定为:,.故选:A.11、D【解析】由已知可得或,结合等差数列和等比数列的定义,可得答案【详解】由,得或,即或,若,则数列是等差数列,则B错误;若,当时,数列是等差数列,当时,数列是等比数列,则A错误数列是等差数列,也可以是等比数列;由,不能得到数列为非0常数列,则不可以既是等差又是等比数列,则C错误;可以既不是等差又不是等比数列,如1,3,5,10,20,,故D正确;故选:D12、D【解析】根据复数在复平面内的坐标表示可得答案.【详解】解:由题意得:在复平面上对应的点为,该点在第四象限.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立如图所示的空间直角坐标系,求出,后可求异面直线所成角的余弦值.【详解】长方形可得,因为平面与平面互相垂直,平面平面,平面,故平面,故可建立如图所示的空间直角坐标系,则,故,,故.故答案为:14、【解析】设出点N的坐标,探求出点Q的轨迹,再求出轨迹上在x轴上方且距离x轴最远的点的纵坐标表达式,借助函数最值计算作答.【详解】圆C:的圆心,半径,圆C与x轴相切,依题意,点M在圆C上,设点,则,线段MN中点,因,则点Q的轨迹是以线段MN为直径的圆(除点M,N外),这个轨迹在x轴上方,于是得这个轨迹上的点到x轴的最大距离为:令,于是得,当,即时,,所以Q点纵坐标的最大值为.故答案为:【点睛】结论点睛:圆上的点到定直线距离的最大值等于圆心到该直线距离加半径.15、1【解析】根据三视图可得如图所示的几何体,从而可求其体积.【详解】据三视图分析知,该几何体为直三棱柱,且底面为直角边为1的等腰直角三角形,高为2,所以其体积故答案为:116、##【解析】不妨设点为第一象限内的点,求出点的坐标,可求得直线、的方程,求出点、的坐标,可求得以及点到直线的距离,利用三角形的面积公式可求得的面积.【详解】不妨设点为第一象限内的点,设点,其中,则,可得,即点,抛物线的焦点为,,所以,直线的方程为,联立,解得或,即点,所以,,直线的方程为,抛物线的准线方程为,联立,可得点,点到直线的距离为,因此,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)直线方程为或,切线段长度为4【解析】(1)先求圆的标准方程,由半径最小则周长最小;(2)由,则圆的方程为:,直线和圆相切则圆心到直线的距离等于半径,分直线与轴垂直和直线与轴不垂直两种情况进行讨论即可得解.进一步,利用圆的几何性质可求解切线的长度.【小问1详解】,配方得:,当时,圆的半径有最小值2,此时圆的周长最小.【小问2详解】由(1)得,,圆的方程为:.当直线与轴垂直时,,此时直线与圆相切,符合条件;当直线与轴不垂直时,设为,由直线与圆相切得:,解得,所以切线方程为,即.综上,直线方程为或.圆心与点的距离,则切线长度为.18、(1)(2)或【解析】(1)将椭圆化为标准方程,求得,进而求得离心率;(2)设直线,,,与椭圆联立,借助韦达定理及弦长公式求得,从而求得直线方程.【小问1详解】由题知,椭圆C:,则,离心率【小问2详解】设直线,,联立,化简得,则,解得,,由弦长公式知,,解得,故直线或19、(1)证明见解析(2)【解析】(1)连接交于点O,连接OD,通过三角形中位线证明即可;(2)建立空间直角坐标系,利用向量法求解即可.【小问1详解】解法1:如图,连接交于点O,连接OD,因为在三棱柱中,四边形是平行四边形,所以O是的中点,因为D为BC的中点,所以在中,,因为平面,平面,所以平面平面解法2:因为在三棱柱中,面ABC,,所以BA,BC,两两垂直,故以B点为坐标原点,建立如图的空间直角坐标系,因为,所以B(0,0,0),A(2,0,0),D(0,1,0),,,所以,,,设平面的一个法向量为,则,即,令,则,∴,平面,所以平面;【小问2详解】设与平面所成角为,由(1)知平面法向量为,F为中点,∴,,∴即与平面所成角正弦值为.20、(1)证明见解析(2)【解析】(1)根据直线的方程可得直线经过定点,而点到圆心的距离小于半径,故点在圆的内部,由此即可证明结果(2)由圆的性质可知,当过圆心时,取最大值,当和过的直径垂直时,取最小值,由此即可求出结果.【小问1详解】证明:由于直线,即令,解得,所以恒过点,所以,所以点在圆内,所以直线与圆恒有两个交点;【小问2详解】解:当过圆心时,取最大值,即圆的直径,由圆的半径,所以的最大值为;当和过的直径垂直时,取最小值,此时圆心到的距离,所以,故的最小值为综上,的取值范围.21、(1)或(2)【解析】(1)先假设命题为真命题,求出的取值范围,为真命题,取补集即可(2)假设命题为真命题,求出的取值范围,根据题意,则命题假设和命题一真一假,分类讨论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年甘肃省嘉峪关市辅警招聘试题解析及答案
- 2026年碱性电解槽技术项目商业计划书
- 2026年智能适老家具项目建议书
- 2026年情绪价值消费空间项目评估报告
- 2026年机密GPU计算项目建议书
- 2026年智能水浸传感器项目商业计划书
- 2026年智能留样秤项目营销方案
- 2026年工业机器人自主升级系统项目商业计划书
- 2026年智能马桶冲洗系统项目项目建议书
- 2026年老年短视频创作项目投资计划书
- 《2025-2026中国房地产市场报告》
- GA/T 751-2024公安视频图像屏幕显示信息叠加规范
- 个人护理健康知识与技巧
- 化工企业安全生产管理制度汇编范本
- 国家开放大学专本科《经济法学》期末纸质考试总题库2025春期版
- 2024年勤学之星个人事迹材料简介
- GB/T 2423.65-2024环境试验第2部分:试验方法试验:盐雾/温度/湿度/太阳辐射综合
- 人参培训课件
- 旅店突发事件预案
- 学习方法总结高效学习的技巧与方法
- 健康中国2030规划纲要考试题库含答案全套
评论
0/150
提交评论