版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东枣庄八中北校区2026届高一上数学期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在新冠肺炎疫情初始阶段,可以用指数模型::I(t)=ert(其中r为指数增长率)描述累计感染病例数I(t)随时间t(单位:天)的变化规律.有学者基于已有数据估计出累计感染病例数增加1倍需要的时间约为2天,据此,在新冠肺炎疫情初始阶段,指数增长率r的值约为()(参考数值:ln20.69)A.0.345 B.0.23C.0.69 D.0.8312.命题的否定是()A. B.C. D.3.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.若圆上有且只有两个点到直线的距离等于1,则半径r的取值范围是A.(4,6) B.[4,6]C.(4,5) D.(4,5]5.若,,,则()A. B.C. D.6.已知函数f(x)=ax2﹣x﹣8(a>0)在[5,20]上单调递增,则实数a的取值范围是()A.[,+∞) B.[5,+∞)C.(﹣∞,20] D.[5,20]7.下列函数中既是奇函数,又是其定义域上的增函数的是A. B.C. D.8.已知函数,当时.方程表示的直线是()A. B.C. D.9.已知函数:①;②;③;④;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是()A.②①③④ B.②③①④C.④①③② D.④③①②10.已知函数在内是减函数,则的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.点是一次函数图象上一动点,则的最小值是______12.函数的零点为_________________.13.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x的最大整数.例如:,.已知函数,若,则________;不等式的解集为________.14.设a>0且a≠1,函数fx15.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.16.在中,已知是延长线上一点,若,点为线段的中点,,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期;(2)求函数的单调增区间;(3)求函数在区间上值域18.已知函数(1)若函数为奇函数,求实数的值;(2)判断函数在定义域上的单调性,并用单调性定义加以证明;(3)若函数为奇函数,求满足不等式的实数的取值范围.19.物联网(InternetofThings,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络.其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景.现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元),仓库到车站的距离x(单位:千米,),其中与成反比,每月库存货物费(单位:万元)与x成正比;若在距离车站9千米处建仓库,则和分别为2万元和7.2万元.(1)求出与解析式;(2)这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?20.如图甲,直角梯形中,,,为的中点,在上,且,现沿把四边形折起得到空间几何体,如图乙.在图乙中求证:(1)平面平面;(2)平面平面.21.如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形生态种植园.设生态种植园的长为,宽为(1)若生态种植园面积为,则为何值时,可使所用篱笆总长最小?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题设可知第天感染病例数为,则第天的感染感染病例数为,由感染病例数增加1倍需要的时间约为2天,则,解出即可得出答案.【详解】由题设可知第天感染病例数为,则第天的感染感染病例数为由感染病例数增加1倍需要的时间约为2天,则所以,即所以故选:A2、C【解析】根据存在量词命题的否定是全称量词命题,选出正确选项.【详解】因为命题是存在量词命题,所以其否定是全称量词命题,即,.故选:C.3、A【解析】解绝对值不等式求解集,根据充分、必要性的定义判断题设条件间的充分、必要关系.【详解】由,可得,∴“”是“”的充分而不必要条件.故选:A.4、A【解析】由圆,可得圆心的坐标为圆心到直线的距离为:由得所以的取值范围是故答案选点睛:本题的关键是理解“圆上有且只有两个点到直线的距离等于1”,将其转化为点到直线的距离,结合题意计算求得结果5、C【解析】先由,可得,结合,,可得,继而得到,,转化,利用两角差的正弦公式即得解【详解】由题意,故故又,故,则故选:C【点睛】本题考查了两角和与差的正弦公式、同角三角函数关系综合,考查了学生综合分析,转化划归,数学运算能力,属于中档题6、A【解析】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为,函数在[5,20]上单调递增,则区间在对称轴的右侧,从而可得答案.【详解】函数f(x)=ax2﹣x﹣8(a>0)的开口向上,对称轴方程为。函数在[5,20]上单调递增,则区间[5,20]在对称轴的右侧.则解得:.故选:A.【点睛】本题考查二次函数的单调性,二次函数的单调性与开口方向和对称轴有关,属于基础题.7、C【解析】对于A,函数的偶函数,不符合,故错;对于B,定义域为,是非奇非偶函数,故错;对于C,定义域R,是奇函数,且是增函数,正确;对于D,是奇函数,但是是减函数,故错考点:本题考查函数的奇偶性和单调性点评:解决本题的关键是掌握初等函数的奇偶性和单调性8、C【解析】先利用对数函数的性质得到所以,再利用直线的斜率和截距判断.【详解】因为时,,所以则直线的斜率为,在轴上的截距故选:C9、D【解析】根据指数函数、幂函数的性质进行选择即可.【详解】①:函数是实数集上的增函数,且图象过点,因此从左到右第三个图象符合;②:函数是实数集上的减函数,且图象过点,因此从左到右第四个图象符合;③:函数在第一象限内是减函数,因此从左到右第二个图象符合;④:函数在第一象限内是增函数,因此从左到右第一个图象符合,故选:D10、B【解析】由题设有为减函数,且,恒成立,所以,解得,选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】把点代入函数的解析式得到,然后利用基本不等式求最小值.【详解】由题意可知,又因为,所以,当且仅当即时等号成立所以的最小值是.故答案为:.12、.【解析】解方程即可.【详解】令,可得,所以函数的零点为.故答案为:.【点睛】本题主要考查求函数的零点,属基础题.13、①.②.【解析】第一空:”根据“高斯函数”的定义,可得,进而再分类讨论建立方程求值即可;第二空:分类讨论建立不等式求解即可.【详解】由题意,得,当时,,即;当时,,即(舍),综上;当时,,即,当时,,即,综上,.故答案为:;.【点睛】关键点睛:求解分段函数相关问题的关键是“分段归类”,即应用分类讨论思想.14、1,0【解析】令指数为0即可求得函数图象所过的定点.【详解】由题意,令x-1=0⇒x=1,y=1-1=0,则函数的图象过定点(1,0).故答案为:(1,0).15、【解析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【点睛】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.16、【解析】通过利用向量的三角形法则,以及向量共线,代入化简即可得出【详解】解:∵()(),∴λ,∴故答案为【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)根据二倍角公式和诱导公式,结合辅助角公式可求得解析式,从而利用周期公式可求得周期;(2)利用整体代换即可求单调增区间;(3)由得,从而可得的取值范围.【详解】(1),所以最小正周期(2)由,得,所以函数的单调递增区间是.(3)由得,则,所以18、(1)(2)函数在上单调递减,证明见解析(3)【解析】(1)利用奇函数的定义可得的值;(2)利用单调性定义证明即可;(3)根据的奇偶性和单调性可得的取值范围.【小问1详解】函数的定义域为,因为为奇函数,所以,所以,所以,所以.【小问2详解】函数在上单调递减.下面用单调性定义证明:任取,且,则因为在上单调递增,且,所以,又,所以,所以函数在上单调递减.【小问3详解】因为为奇函数,所以,由得,即,由(2)可知,函数在上单调递减,所以,即,解得或,所以的取值范围为.19、(1),(2)把仓库建在距离车站4千米处才能使两项费用之和最小,最小费用是7.2万元【解析】(1)设出与以及与x的解析式,将x=9的费用代入,求得答案;(2)列出两项费用之和的表达式,利用基本不等式求得其最小值,可得答案.【小问1详解】设,,其中,当时,,.解得,,所以,.【小问2详解】设两项费用之和为z(单位:万元)则,当且仅当,即时,“”成立,所以这家公司应该把仓库建在距离车站4千米处才能使两项费用之和最小,最小费用是7.2万元.20、(1)证明见解析(2)证明见解析【解析】(1)证明出平面,平面,利用面面垂直的判定定理可证得结论成立;(2)证明出平面,可得出平面,利用面面垂直的判定定理可证得结论成立.【小问1详解】证明:翻折前,,翻折后,则有,,因为平面,平面,平面,因为平面,平面,平面,因为,因此,平面平面.【小问2详解】证明:翻折前,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年厦门市杏南中学产假顶岗教师招聘备考题库有答案详解
- 2026年北京生物制品研究所有限责任公司招聘备考题库及答案详解一套
- 2026年中铁二十四局集团北京分公司、物资公司招聘备考题库及参考答案详解1套
- 2026年天津市河北区卫生健康系统公开招聘事业单位工作人员85人备考题库及一套答案详解
- 2025年关岭县岗乌镇卫生院乡村医生招聘备考题库参考答案详解
- 2026年九江市第一人民医院诚聘卫生专业人才15人备考题库及完整答案详解1套
- 2026年南大附小第三分校招聘语文、数学教师各一名备考题库附答案详解
- 2026年八路军一二九师纪念馆公开招聘劳务派遣人员备考题库附答案详解
- 2026年吴川市公开招聘大学生乡村医生28人备考题库参考答案详解
- 2026年太仓市第一人民医院第一批事业编制公开招聘专业技术人员16人备考题库及参考答案详解
- 被打和解协议书范本
- 《糖尿病合并高血压患者管理指南(2025版)》解读
- 职业暴露考试试题及答案
- DB61-T 1843-2024 酸枣种植技术规范
- 机械密封安装及维护培训
- 古建筑修缮加固施工方案
- DG-TJ08-19-2023园林绿化养护标准
- 上海市2024-2025学年高二上学期期末考试英语试题(含答案无听力原文及音频)
- 实验室评审不符合项原因及整改机制分析
- 农贸市场摊位布局措施
- 一列肠ESD个案护理
评论
0/150
提交评论