陕西省西安市第七十中学2026届高一上数学期末学业质量监测试题含解析_第1页
陕西省西安市第七十中学2026届高一上数学期末学业质量监测试题含解析_第2页
陕西省西安市第七十中学2026届高一上数学期末学业质量监测试题含解析_第3页
陕西省西安市第七十中学2026届高一上数学期末学业质量监测试题含解析_第4页
陕西省西安市第七十中学2026届高一上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市第七十中学2026届高一上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的值是A.0 B.C. D.12.已知是自然对数的底数,函数的零点为,函数的零点为,则下列不等式中成立的是A. B.C. D.3.已知,,则A. B.C. D.4.已知函数的定义域为,命题为奇函数,命题,那么是的()A.充分必要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件5.已知函数满足∶当时,,当时,,若,且,设,则()A.没有最小值 B.的最小值为C.的最小值为 D.的最小值为6.若,则所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限7.设集合A={3,4,5},B={3,6},P={x|xA},Q={x|xB},则PQ=A.{3}B.{3,4,5,6}C.{{3}}D.{{3},}8.函数的零点所在的区间是A. B.C. D.9.在平行四边形中,,,为边的中点,,则()A.1 B.2C.3 D.410.如图,在等腰梯形中,,分别是底边的中点,把四边形沿直线折起使得平面平面.若动点平面,设与平面所成的角分别为(均不为0).若,则动点的轨迹围成的图形的面积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.___________.12.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是________.13.第24届冬季奥林匹克运动会(TheXXIVOlympicWinterGames),即2022年北京冬季奥运会,计划于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬季奥运会设7个大项,15个分项,109个小项.某大学青年志愿者协会接到组委会志愿者服务邀请,计划从大一至大三青年志愿者中选出24名志愿者,参与北京冬奥会高山滑雪比赛项目的服务工作.已知大一至大三的青年志愿者人数分别为50,40,30,则按分层抽样的方法,在大一青年志愿者中应选派__________人.14.在正三角形中,是上的点,,则________15.已知集合,,则集合中的元素个数为___________.16.幂函数的图象经过点,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求不等式的解集18.已知函数,若函数的图象过点,(1)求的值;(2)若,求实数的取值范围;(3)若函数有两个零点,求实数的取值范围.19.(1)若,求的范围;(2)若,,且,,求.20.计算下列各式的值:(Ⅰ)(Ⅱ)21.已知.(1)求函数的单调递减区间;(2)求函数的最值并写出取最值时自变量的值;(3)若函数为偶函数,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用诱导公式和和差角公式直接求解.【详解】故选:B2、A【解析】解:由f(x)=ex+x﹣2=0得ex=2﹣x,由g(x)=lnx+x﹣2=0得lnx=2﹣x,作出函数y=ex,y=lnx,y=2﹣x的图象如图:∵函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,∴y=ex与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b,由图象知a<1<b,故选A考点:函数的零点3、C【解析】由已知可得,故选C考点:集合的基本运算4、C【解析】根据奇函数的性质及命题充分必要性的概念直接判断.【详解】为奇函数,则,但,无法得函数为奇函数,例如,满足,但是为偶函数,所以是的充分不必要条件,故选:C.5、B【解析】根据已知条件,首先利用表示出,然后根据已知条件求出的取值范围,最后利用一元二次函数并结合的取值范围即可求解.【详解】∵且,则,且,∴,即由,∴,又∵,∴当时,,当时,,故有最小值.故选:B.6、A【解析】先由题中不等式得出在第二象限,然后求出的范围,即可判断其所在象限【详解】因为,,所以,故在第二象限,即,故,当为偶数时,在第一象限,当为奇数时,在第三象限,即所在象限是第一、三象限故选A.【点睛】本题考查了三角函数的象限角,属于基础题7、D【解析】集合P={x|x⊆A}表示集合A的子集构成的集合,故P={∅,{3},{4},{5},{3,4},{3,5},{4,5},{3,4,5}},同样Q={∅,{3},{6},{3,6}}.∴P∩Q={{3},Φ};故选D.8、B【解析】∵,,,,∴函数的零点所在区间是故选B点睛:函数零点问题,常根据零点存在性定理来判断,如果函数在区间上的图象是连续不断的一条曲线,且有,那么,函数在区间内有零点,即存在使得

这个也就是方程的根.由此可判断根所在区间.9、D【解析】以为坐标原点,建立平面直角坐标系,设,再利用平面向量的坐标运算求解即可【详解】以坐标原点,建立平面直角坐标系,设,则,,,,故,由可得,即,化简得,故,故,,故故选:D10、D【解析】由题意,PE=BEcotθ1,PF=CFcotθ2,∵BE=CF,θ1=θ2,∴PE=PF以EF所在直线为x轴,EF的垂直平分线为y轴建立坐标系,设E(﹣,0),F(,0),P(x,y),则(x+)2+y2=[(x﹣)2+y2],∴3x2+3y2+5ax+a2=0,即(x+a)2+y2=a2,轨迹为圆,面积为故答案选:D点睛:这个题考查的是立体几何中点的轨迹问题,在求动点轨迹问题中常用的方法有:建立坐标系,将立体问题平面化,用方程的形式体现轨迹;或者根据几何意义得到轨迹,但是注意得到轨迹后,一些特殊点是否需要去掉二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】利用换底公式及对数的性质计算可得;【详解】解:.故答案为:12、【解析】长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积【详解】长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:,则这个球的表面积是:故答案为:【点睛】本题考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力13、10【解析】根据分层抽样原理求出抽取的人数【详解】解:根据分层抽样原理知,,所以在大一青年志愿者中应选派10人故答案为:1014、【解析】根据正三角形的性质以及向量的数量积的定义式,结合向量的特点,可以确定,故答案为考点:平面向量基本定理,向量的数量积,正三角形的性质15、【解析】解不等式确定集合,解方程确定集合,再由交集定义求得交集后可得结论【详解】由题意,,∴,只有1个元素故答案为:116、【解析】设幂函数的解析式,然后代入求解析式,计算.【详解】设,则,解得,所以,得故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)奇函数;证明见解析;(3)【解析】(1)利用对数的性质可得,解不等式即可得函数的定义域.(2)根据奇偶性的定义证明的奇偶性即可.(3)由的解析式判断单调性,利用对数函数的单调性解不等式即可.【详解】(1)要使有意义,则,解得:∴的定义域为.(2)为奇函数,证明如下:由(1)知:且,∴为奇函数,得证(3)∵在内是增函数,由,∴,解得,∴不等式的解集是.18、(1).(2).(3).【解析】(1)由函数过点,代入函数即可得的值;(2)由可得的取值范围;(3)由函数的大致图象即可得的取值范围.试题解析:(1),,,.(2),,.(3)当时,是减函数,值域为.偶函数,时,是增函数,值域为,函数有两个零点时,.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识19、(1);(2).【解析】(1)利用公式化简函数解析式可得,将函数解析式代入不等式得,即可求得x的取值范围;(2)由求得,根据的范围求出,,从而求得,,再利用两角差的余弦公式即可得解.【详解】若,则,,(2)因为,所以,,因为,所以,,,【点睛】本题考查三角函数和差化积公式,两角和与差的正弦公式,同角三角函数的平方关系,计算时注意角的取值范围,属于中档题.20、(Ⅰ);(Ⅱ).【解析】(1)根据对数运算法则化简求值(2)根据指数运算法则,化简求值试题解析:(Ⅰ)原式.(Ⅱ)原式.21、(1);(2)当时,;当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论