版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江西省南昌市新建区第一中学数学高一上期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.《九章算术》中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=×(弦×矢+矢).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径为2米的弧田(如图2),则这个弧田面积大约是()平方米.(,结果保留整数)A.2 B.3C.4 D.52.在中,已知,则角()A. B.C. D.或3.已知函数f(x)(x∈R)满足f(2-x)=-f(x),若函数y=与f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym)(m∈N*),则x1+x2+x3+…+xm的值为()A.4m B.2mC.m D.04.若全集,且,则()A.或 B.或C. D.或.5.已知函数在R上为减函数,则实数a的取值范围是()A. B.C. D.6.函数的单调递减区间为()A. B.C. D.7.已知设alog30.2,b30.2,c0.23,则a,b,c的大小关系是()A.abc B.acbC.bac D.bca8.已知函数可表示为1234则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增9.已知函数在区间是减函数,则实数a的取值范围是A. B.C. D.10.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数则的值为________12.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.13.函数的单调减区间是__________14.如图,在三棱锥中,已知,,,,则三棱锥的体积的最大值是________.15.如图,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________16.已知函数在上单调递减,则实数的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最大值,并写出取得最大值时自变量的集合;(2)把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,求在上的单调递增区间.18.已知函数,(1)若函数在区间上存在零点,求正实数的取值范围;(2)若,,使得成立,求正实数的取值范围19.如图,已知正三棱柱的底面边长为2,侧棱长为,点E在侧棱上,点F在侧棱上,且(1)求证:;(2)求二面角的大小20.已知,为锐角,,.(1)求的值;(2)求的值.21.已知圆的一般方程为.(1)求的取值范围;(2)若圆与直线相交于两点,且(为坐标原点),求以为直径的圆的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先由已知条件求出,然后利用公式求解即可【详解】因为,所以,在中,,所以,所以,所以这个弧田面积为,故选:A2、C【解析】利用正弦定理求出角的正弦值,再求出角的度数.【详解】因为,所以,解得:,,因为,所以.故选:C.3、C【解析】由条件可得,即有关于点对称,又的图象关于点对称,即有,为交点,即有,也为交点,计算即可得到所求和【详解】解:函数满足,即为,可得关于点对称,函数的图象关于点对称,即有,为交点,即有,也为交点,,为交点,即有,也为交点,则有.故选.【点睛】本题考查抽象函数的求和及对称性的运用,属于中档题.4、D【解析】根据集合补集的概念及运算,准确计算,即可求解.【详解】由题意,全集,且,根据集合补集的概念及运算,可得或.故选:D.5、D【解析】根据分段函数单调性,可得关于的不等式组,解不等式组即可确定的取值范围.【详解】函数在R上为减函数所以满足解不等式组可得.故选:D【点睛】本题考查了分段函数单调性的应用,根据分段函数的单调性求参数的取值范围,属于中档题.6、A【解析】解不等式,,即可得答案.【详解】解:函数,由,,得,,所以函数的单调递减区间为,故选:A.7、D【解析】由指数和对数函数单调性结合中间量0和1来比较a,b,c的大小关系即可有结果.【详解】因为,,所以故选:D8、B【解析】,所以选项A错误;由表得的值域是,所以选项B正确C不正确;在区间上不是单调递增,所以选项D错误.详解】A.,所以该选项错误;B.由表得的值域是,所以该选项正确;C.由表得的值域是,不是,所以该选项错误;D.在区间上不是单调递增,如:,但是,所以该选项错误.故选:B【点睛】方法点睛:判断函数的性质命题的真假,一般要认真理解函数的定义域、值域、单调性等的定义,再根据定义分析判断.9、C【解析】先由题意得到二次函数在区间是增函数,且在上恒成立;列出不等式组求解,即可得出结果.【详解】因为函数在区间是减函数,所以只需二次函数在区间是增函数,且在上恒成立;所以有:,解得;故选C【点睛】本题主要考查由对数型复合函数的单调性求参数的问题,熟记对数函数与二次函数的性质即可,属于常考题型.10、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接利用分段函数解析式,先求出的值,从而可得的值.【详解】因为函数,所以,则,故答案为.【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.12、9【解析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.13、【解析】,在上递增,在上递增,在上递增,在上递减,复合函数的性质,可得单调减区间是,故答案为.14、【解析】过作垂直于的平面,交于点,,作,通过三棱锥体积公式可得到,可分析出当最大时所求体积最大,利用椭圆定义可确定最大值,由此求得结果.【详解】过作垂直于的平面,交于点,作,垂足为,,当取最大值时,三棱锥体积取得最大值,由可知:当为中点时最大,则当取最大值时,三棱锥体积取得最大值.又,在以为焦点的椭圆上,此时,,,,三棱锥体积最大值为.故答案为:.【点睛】关键点点睛:本题考查三棱锥体积最值的求解问题,解题关键是能够将所求体积的最值转化为线段长度最值的求解问题,通过确定线段最值得到结果.15、2【解析】证明平面得到,故与以为直径的圆相切,计算半径得到答案.详解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一个点Q满足PQ⊥QD,即与以为直径的圆相切,,故间的距离为半径,即为1,故.故答案为:216、【解析】根据指数函数与二次函数的单调性,以及复合函数的单调性的判定方法,求得在上单调递增,在区间上单调递减,再结合题意,即可求解.【详解】令,可得抛物线的开口向上,且对称轴为,所以函数在上单调递减,在区间上单调递增,又由函数,根据复合函数的单调性的判定方法,可得函数在上单调递增,在区间上单调递减,因为函数在上单调递减,则,可得实数的取值范围是.故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)的最大值,(2)【解析】(1)根据的范围可得的范围,可得的最大值及取得最大值时自变量的集合;(2)由图象平移规律可得,结合的范围和正弦曲线的单调性可得答案.【小问1详解】因为,所以,所以,当即时的最大值,所以取得最大值时自变量的集合是.【小问2详解】因为把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,所以.因为,所以.因为正弦曲线在上的单调递增区间是,所以,所以.所以在上的单调递增区间是.18、(1)(2)【解析】(1)结合函数的单调性及零点存在定理可得结论;(2)由题意可得在,上,,由函数的单调性求得最值,解不等式可得所求范围【小问1详解】函数,因为在区间上单调递减,又,所以在区间上单调递减,所以在区间上单调递减,若在区间上存在零点,则.【小问2详解】存在,,,使得成立,等价为在,上,由在,递增,可得的最小值为,又,所以在,递减,可得的最大值为,由,解得,所以;综上可得,的范围是19、(1)证明见解析;(2).【解析】(1)根据几何体的结构特征,可以为坐标原点,分别为轴和轴建立空间直角坐标系,写出各个点的坐标.(1)证明即即可;(2)分别求出平面的一个法向量为和侧面的一个法向量为,根据求出的法向量的夹角来求二面角的大小.试题解析:建立如图所示的空间直角坐标系,则由已知可得(1)证明:,所以.(2),设平面的一个法向量为,由,得,即,解得,可取设侧面的一个法向量为,由,及可取.设二面角的大小为,于是由为锐角可得所以.即所求二面角的大小为.考点:空间向量证明直线与直线垂直及求解二面角.20、(1)(2)【解析】(1)根据同角三角函数关系求得,再用诱导公式化简即可求解;(2)利用余弦的两角差公式计算即可.【小问1详解】因为为锐角,所以,,.【小问2详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年电气产业环境变化与市场对策
- 2026年桥梁施工技术规范与质量控制研究
- 2026年电气传动系统中的控制器设计
- 护理核心技能培训材料
- 老年常见疾病及预防措施
- 骨质疏松课件动态
- 2026年中能融合智慧科技有限公司招聘备考题库完整参考答案详解
- 2026年上海大学企业家商学院运营总监招聘备考题库附答案详解
- 2026年中电能投(福建)有限公司招聘备考题库及参考答案详解1套
- 2026年巴彦淖尔这两所学校招聘教师4人备考题库及答案详解参考
- 安全生产管理机构人员配备表
- 非职业一氧化碳中毒课件
- 保定市道路野生地被植物资源的调查与分析:物种多样性与生态功能的探究
- smt车间安全操作规程
- JJF 2254-2025戥秤校准规范
- 强制医疗活动方案
- DB42T 850-2012 湖北省公路工程复杂桥梁质量鉴定规范
- 月经不调的中医护理常规
- 2024-2025学年江苏省南通市如东县、通州区、启东市、崇川区高一上学期期末数学试题(解析版)
- 瑞幸ai面试题库大全及答案
- 现代密码学(第4版)-习题参考答案
评论
0/150
提交评论