版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省诏安县怀恩中学2026届数学高二上期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A. B.C. D.2.正四棱锥中,,则直线与平面所成角的正弦值为A. B.C. D.3.直线过点且与双曲线仅有一个公共点,则这样的直线有()A.1条 B.2条C.3条 D.4条4.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C.与相等 D.5.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.6.中国明代商人程大位对文学和数学颇感兴趣,他于60岁时完成杰作《直指算法统宗》.这是一本风行东亚的数学名著,该书A.76石 B.77石C.78石 D.79石7.设等比数列,有下列四个命题:①{a②是等比数列;③是等比数列;④lgan其中正确命题的个数是()A.1 B.2C.3 D.48.等差数列中,若,,则等于()A. B.C. D.9.下列语句为命题的是()A. B.你们好!C.下雨了吗? D.对顶角相等10.直线与圆的位置关系是()A.相交 B.相切C.相离 D.不确定11.在三棱柱中,,,,则这个三棱柱的高()A1 B.C. D.12.点F是抛物线的焦点,点,P为抛物线上一点,P不在直线AF上,则△PAF的周长的最小值是()A.4 B.6C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,则_________.14.已知抛物线:上有两动点,,且,则线段的中点到轴距离的最小值是___________.15.已知函数,若递增数列满足,则实数的取值范围为__________.16.曲线在点处的切线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C的顶点在坐标原点,焦点在x轴上,点在抛物线C上(1)求抛物线C的方程;(2)过抛物线C焦点F的直线l交抛物线于P,Q两点,若求直线l的方程18.(12分)已知单调递增的等比数列满足:,且是,的等差中项(1)求数列的通项公式;(2)若,,求19.(12分)已知是等差数列,,.(1)求的通项公式;(2)设的前项和,求的值.20.(12分)在一次重大军事联合演习中,以点为中心的海里以内海域被设为警戒区域,任何船只不得经过该区域.已知点正北方向海里处有一个雷达观测站,某时刻测得一艘匀速直线行驶的船只位于点北偏东,且与点相距海里的位置,经过小时又测得该船已行驶到位于点北偏东,且与点相距海里的位置(1)求该船的行驶速度(单位:海里/小时);(2)该船能否不改变方向继续直线航行?请说明理由21.(12分)在四棱锥中,平面,,,,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求直线与平面所成角的正弦值.22.(10分)如图,在四棱锥中,底面是矩形,平面于点M连接.(1)求证:平面;(2)求平面与平面所成角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】如图:如图,取小圆上一点,连接并延长交大圆于点,连接,,则在小圆中,,在大圆中,,根据大圆的半径是小圆半径的倍,可知的中点是小圆转动一定角度后的圆心,且这个角度恰好是,综上可知小圆在大圆内壁上滚动,圆心转过角后的位置为点,小圆上的点,恰好滚动到大圆上的也就是此时的小圆与大圆的切点.而在小圆中,圆心角(是小圆与的交点)恰好等于,则,而点与点其实是同一个点在不同时刻的位置,则可知点与点是同一个点在不同时刻的位置.由于的任意性,可知点的轨迹是大圆水平的这条直径.类似的可知点的轨迹是大圆竖直的这条直径.故选A.2、C【解析】建立合适的空间直角坐标系,求出和平面的法向量,直线与平面所成角的正弦值即为与的夹角的余弦值的绝对值,利用夹角公式求出即可.【详解】建立如图所示的空间直角坐标系.有图知,由题得、、、.,,.设平面的一个法向量,则,,令,得,,.设直线与平面所成的角为,则.故选:C.【点睛】本题考查线面角的求解,利用向量法可简化分析过程,直接用计算的方式解决问题,是基础题.3、C【解析】根据直线的斜率存在与不存在,分类讨论,结合双曲线的渐近线的性质,即可求解.【详解】当直线的斜率不存在时,直线过双曲线的右顶点,方程为,满足题意;当直线的斜率存在时,若直线与两渐近线平行,也能满足与双曲线有且仅有一个公共点.综上可得,满足条件的直线共有3条.故选:C.【点睛】本题主要考查了直线与双曲线的位置关系,以及双曲线的渐近线的性质,其中解答中忽视斜率不存在的情况是解答的一个易错点,着重考查了分析问题和解答问题的能力,以及分类讨论思想的应用,属于基础题.4、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D5、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B6、C【解析】设出未知数,列出方程组,求出答案.【详解】设甲、乙、丙分得的米数为x+d,x,x-d,则,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故选:C7、C【解析】根据等比数列的性质对四个命题逐一分析,由此确定正确命题的个数.【详解】是等比数列可得(为定值)①为常数,故①正确②,故②正确③为常数,故③正确④不一定为常数,故④错误故选C.【点睛】本小题主要考查等比数列的性质,属于基础题.8、C【解析】由等差数列下标和性质可得.【详解】因为,,所以.故选:C9、D【解析】根据命题的定义判断即可.【详解】因为能够判断真假的语句叫作命题,所以ABC错误,D正确.故选:D10、A【解析】首先求出直线过定点,再判断点在圆内,即可判断;【详解】解:直线恒过定点,又,即点在圆内部,所以直线与圆相交;故选:A11、D【解析】先求出平面ABC的法向量,然后将高看作为向量在平面ABC的法向量上的投影的绝对值,则答案可求.【详解】设平面ABC的法向量为,而,,则,即有,不妨令,则,故,设三棱柱的高为h,则,故选:D.12、C【解析】由抛物线的定义转化后求距离最值【详解】抛物线的焦点,准线为过点作准线于点,故△PAF的周长为,,可知当三点共线时周长最小,为故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知可知即数列是首项为1,公差为1的等差数列,进而可求得数列的通项公式,即可求.【详解】由题意知:,即,而,∴数列是首项为1,公差为1的等差数列,有,∴,则.故答案为:【点睛】关键点点睛:由递推关系求数列的通项,进而得到的通项公式写出项.14、2【解析】设抛物线的焦点为,由,结合抛物线的定义可得线段的中点到轴距离的最小值.【详解】设抛物线的焦点为,点在抛物线的准线上的投影为,点在直线上的投影为,线段的中点为,点到轴的距离为,则,∴,当且仅当即三点共线时等号成立,∴线段的中点到轴距离的最小值是2,故答案为:2.15、【解析】根据的单调性列不等式,由此求得的取值范围.【详解】由于是递增数列,所以.所以的取值范围是.故答案为:16、【解析】求导后令求出切线斜率,即可写出切线方程.【详解】由题意知:,当时,,故切线方程为,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)把点的坐标代入方程即可;(2)设直线方程,解联立方程组,消未知数,得到一元二次方程,再利用韦达定理和已知条件求斜率.【小问1详解】因为抛物线C的顶点在原点,焦点在x轴上,所以设抛物线方程为又因为点在抛物线C上,所以,解得,所以抛物线的方程为;【小问2详解】抛物线C的焦点为,当直线l的斜率不存在时,,不符合题意;当直线l的斜率存在时,设直线l的方程为,设直线l交抛物线的两点坐标为,,由得,,,,由抛物线得定义可知,所以,解得,即,所以直线l的方程为或18、(1);(2)【解析】(1)将已知条件整理变形为等比数列的首项和公比来表示,解方程组得到基本量,可得到通项公式(2)化简通项得,根据特点求和时采用错位相减法求解试题解析:(1)设等比数列的首项为,公比为,依题意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又单调递增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考点:1.等比数列通项公式;2.错位相减求和19、(1);(2).【解析】(1)设等差数列的公差为,利用题中等式建立、的方程组,求出、的值,然后根据等差数列的通项公式求出数列的通项公式;(2)利用等差数列前项和公式求出,然后由求出的值.【详解】(1)设等差数列的公差为,则,解得,,数列的通项为;(2)数列的前项和,由,化简得,即,.【点睛】本题考查等差数列的通项公式的求解,考查等差数列的前项和公式,常用的方法就是利用首项和公差建立方程组求解,考查运算求解能力,属于中等题.20、(1)海里/小时;(2)该船要改变航行方向,理由见解析.【解析】(1)设一个单位为海里,建立以为坐标原点,正东、正北方向分别为、轴的正方向建立平面直角坐标系,计算出,即可求得该船的行驶速度;(2)求出直线的方程,计算出点到直线的距离,可得出结论.【小问1详解】解:设一个单位为海里,建立以为坐标原点,正东、正北方向分别为、轴的正方向建立如下图所示的平面直角坐标系,则坐标平面中,,且,,则、、,,所以,所以、两地的距离为海里,所以该船行驶的速度为海里/小时.【小问2详解】解:直线的斜率为,所以直线的方程为,即,所以点到直线的距离为,所以直线会与以为圆心,以个单位长为半径的圆相交,因此该船要改变航行方向,否则会进入警戒区域21、(1)证明见解析;(2)证明见解析;(3).【解析】(1)根据给定条件证得即可推理作答.(2)由已知条件,以点A作原点建立空间直角坐标系,借助空间位置关系的向量证明即可作答.(3)利用(2)中信息,借助空间向量求直线与平面所成角的正弦值.【小问1详解】在四棱锥中,因分别是的中点,则,因平面,平面,所以平面.【小问2详解】在四棱锥中,平面,,以点A为原点,射线AB,AD,AP分别为x,y,z轴非负半轴建立空间直角坐标系,如图,则,而且,则,,设平面的法向量,由,令,得,又,因此有,所以平面.【小问3详解】由(2)知,,令直线与平面所成角为,则有,所以直线与平面所成角的正弦值.22、(1)证明见详解(2)【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年上海寰宇物流装备有限公司招聘备考题库及一套答案详解
- 2026年南通市邮政管理局招聘辅助人员备考题库及1套参考答案详解
- 2026年九江市寻阳实业集团有限公司面向社会公开招聘工作人员9人备考题库参考答案详解
- 2026年三亚市人力资源集团有限公司招聘备考题库完整参考答案详解
- 2026年乐业文山每日招聘备考题库(第三百五十五期)丘北智拓职业技能培训学校招聘备考题库及答案详解1套
- 2026年广州市黄埔军校小学招聘备考题库完整参考答案详解
- 2026年宁波市江北区妇幼保健计划生育服务中心公开招聘事业编制外人员备考题库完整答案详解
- 2026年哈尔滨港务局有限公司公开招聘备考题库及一套完整答案详解
- 2026年天津中医药大学第一附属医院招聘备考题库及答案详解1套
- 2026年三水区理工学校招聘语文、数学、英语合同制教师备考题库及一套参考答案详解
- 2023-2024学年浙江省杭州市西湖区五年级(上)期末数学试卷
- 2024年重庆市璧山区敬老院达标建设及规范管理实施办法(全文完整)
- 作业队组建管理办法
- 养老院年终工作总结
- csco食管癌指南解读
- 新版小黑书高中英语抗遗忘速记大纲3500词高中知识点大全复习
- 部编本语文三年级上册词语表
- 林业地类代码表
- 辅导员工作谈心谈话分析-辅导员谈心谈话案例
- 混凝土回弹数据自动计算表格
- 中国特色革命道路的探索复习课
评论
0/150
提交评论