版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届湖南省浏阳市三中数学高二上期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知向量,满足条件,则的值为()A.1 B.C.2 D.2.若点在椭圆上,则该椭圆的离心率为()A. B.C. D.3.若将双曲线绕其对称中心顺时针旋转120°后可得到某一函数的图象,且该函数在区间上存在最小值,则双曲线C的离心率为()A. B.C.2 D.4.已知f(x)=x3+(a-1)x2+x+1没有极值,则实数a的取值范围是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)5.若复数满足,则复平面内表示的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.在四棱锥中,底面是正方形,为的中点,若,则()A B.C. D.7.已知定义在上的函数满足下列三个条件:①当时,;②的图象关于轴对称;③,都有.则、、的大小关系是()A. B.C. D.8.直线的斜率是()A. B.C. D.9.在空间直角坐标系中,已知,,则MN的中点P到坐标原点О的距离为()A. B.C.2 D.310.由伦敦著名建筑事务所SteynStudio设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品,若将如图所示的大教堂外形弧线的一段近似看成双曲线下支的一部分,离心率为,则该双曲线的渐近线方程为()A. B.C. D.11.下列命题中是真命题的是()A.“”是“”的充分非必要条件B.“”是“”的必要非充分条件C.在中“”是“”的充分非必要条件D.“”是“”的充要条件12.为推动党史学习教育各项工作扎实开展,营造“学党史、悟思想、办实事、开新局”的浓厚氛围,某校党委计划将中心组学习、专题报告会、党员活动日、主题班会、主题团日这五种活动分5个阶段安排,以推动党史学习教育工作的进行,若主题班会、主题团日这两个阶段相邻,且中心组学习必须安排在前两阶段并与党员活动日不相邻,则不同的安排方案共有()A.10种 B.12种C.16种 D.24种二、填空题:本题共4小题,每小题5分,共20分。13.已知,,若,则_________.14.已知函数(1)求函数的单调区间;(2)设上存在极大值M,证明:.15.经过点,圆心在x轴正半轴上,半径为5的圆的方程为________16.在正方体中,二面角的大小为__________(用反三角表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:,点A是圆上一动点,点,点是线段的中点.(1)求点的轨迹方程;(2)直线过点且与点的轨迹交于A,两点,若,求直线的方程.18.(12分)如图,在梯形中,,四边形为矩形,且平面,.(1)求证:;(2)点在线段(不含端点)上运动,设直线与平面所成角为,求的取值范围.19.(12分)已知椭圆的焦距为,离心率为(1)求椭圆方程;(2)设过椭圆顶点,斜率为的直线交椭圆于另一点,交轴于点,且,,成等比数列,求的值20.(12分)年月初,浙江杭州、宁波、绍兴三地相继爆发新冠肺炎疫情.疫情期间口罩需求量大增,某医疗器械公司开始生产口罩,并且对所生产口罩的质量按指标测试分数进行划分,其中分数不小于的为合格品,否则为不合格品,现随机抽取件口罩进行检测,其结果如表:测试分数数量(1)根据表中数据,估计该公司生产口罩的不合格率;(2)若用分层抽样的方式按是否合格从所生产口罩中抽取件,再从这件口罩中随机抽取件,求这件口罩全是合格品的概率21.(12分)已知数列的通项公式为:,其中.记为数列的前项和(1)求,;(2)数列的通项公式为,求的前项和22.(10分)已知椭圆的右焦点为,短轴长为4,设,的左右有两个焦点求椭圆C的方程;若P是该椭圆上的一个动点,求的取值范围;是否存在过点的直线l与椭圆交于不同的两点C,D,使得?若存在,求出直线l的方程;若不存在,请说明两点
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先求出坐标,进而根据空间向量垂直的坐标运算求得答案.【详解】因为,所以,解得.故选:A.2、C【解析】根据给定条件求出即可计算椭圆的离心率.【详解】因点在椭圆,则,解得,而椭圆长半轴长,所以椭圆离心率.故选:C3、C【解析】由题意,可知双曲线的一条渐近线的倾斜角为120°,再确定参数的正负即可求解.【详解】双曲线,令,则,显然,则一条渐近线方程为,绕其对称中心顺时针旋转120°后可得到某一函数的图象,则渐近线就需要旋转到与坐标轴重合,故渐近线方程的倾斜角为120°,即,该函数在区间上存在最小值,可知,所以,所以.故选:C4、C【解析】求导得,再解不等式即得解.【详解】由得,根据题意得,解得故选:C5、A【解析】根据复数的运算法则,求得,结合复数的几何意义,即可求解.【详解】由题意,复数满足,可得,所以复数在复平面内对应的点的坐标为,位于第一象限.故选:A.6、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.7、A【解析】推导出函数为偶函数,结合已知条件可得出,,,利用导数可知函数在上为减函数,由此可得出、、的大小关系.【详解】因为函数的图象关于轴对称,则,故,,又因为,都有,所以,,所以,,,,因为当时,,,当且仅当时,等号成立,且不恒为零,故函数在上为减函数,因为,则,故.故选:A.8、D【解析】把直线方程化为斜截式即得【详解】直线方程的斜截式为,斜率为故选:D9、A【解析】利用中点坐标公式及空间中两点之间的距离公式可得解.【详解】,,由中点坐标公式,得,所以.故选:A10、B【解析】求出的值,可得出双曲线的渐近线方程.【详解】由已知可得,因此,该双曲线的渐近线方程为.故选:B.11、B【解析】根据充分条件、必要条件、充要条件的定义依次判断.【详解】当时,,非充分,故A错.当不能推出,所以非充分,,所以是必要条件,故B正确.当在中,,反之,故为充要条件,故C错;当时,,,,充分条件,因为,当时成立,非必要条件,故D错.故选:B.12、A【解析】对中心组学习所在的阶段分两种情况讨论得解.【详解】解:如果中心组学习在第一阶段,主题班会、主题团日在第二、三阶段,则其它活动有2种方法;主题班会、主题团日在第三、四阶段,则其它活动有1种方法;主题班会、主题团日在第四、五阶段,则其它活动有1种方法,则此时共有种方法;如果中心组学习在第二阶段,则第一阶段只有1种方法,后面的三个阶段有种方法.综合得不同的安排方案共有10种.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,,利用向量数量积的坐标运算可得,然后利用定积分性质可得,原式,最后利用微积分基本定理计算,,利用定积分的几何意义计算,即可得答案.【详解】解:因为,,且,所以,解得,所以====.故答案为:.14、(1)在单调递增,单调递减;(2)详见解析.【解析】(1)求得,利用和即可求得函数的单调性区间;(2)求得函数的解析式,求,对的情况进行分类讨论得到函数有极大值的情形,再结合极大值点的定义进行替换、即可求解.【详解】(1)由题意,函数,则,当时,令,所以函数单调递增;当时,令,即,解得或,令,即,解得,所以函数在区间上单调递增,在区间中单调递减,当时,令,即,解得或,令,即,解得,所以函数在单调递增,在单调递减.(2)由函数,则,令,可得令,解得,当时.,函数在单调递增,此时,所以,函数在上单调递增,此时不存在极大值,当时,令解得,令,解得,所以上单调递减,在上单调递增,因为在上存在极大值,所以,解得,因为,易证明,存在时,,存在使得,当在区间上单调递增,在区间单调递减,所以当时,函数取得极大值,即,,由,所以【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于此类问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题15、【解析】设圆方程为,代入原点计算得到答案.【详解】设圆方程为经过点,代入圆方程则圆方程为故答案为【点睛】本题考查了圆方程的计算,设出圆方程是解题的关键.16、【解析】作出二面角的平面角,并计算出二面角的大小.【详解】设,画出图像如下图所示,由于,所以平面,所以,所以是二面角的平面角.所以.所以二面角的大小为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)x=1或y=1.【解析】(1)设线段中点为,点,用x,y表示,代入方程即可;(2)分l斜率存在和不存在进行讨论,根据弦长求出l方程.【小问1详解】设线段中点为,点,,,,,,即点C的轨迹方程为.【小问2详解】直线l的斜率不存在时,l为x=1,代入得,则弦长满足题意;直线l斜率存在时,设直线l斜率为k,其方程为,即,圆的圆心到l的距离,则;综上,l为x=1或y=1.18、(1)证明见解析(2)【解析】(1)过作,垂足为,利用正余弦定理可证,再利用线线垂足证明线面垂直,进而可得证;(2)以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,利用坐标法求线面夹角的正弦值.【小问1详解】证明:由已知可得四边形是等腰梯形,过作,垂足为,则,在中,,则,可得,在中,由余弦定理可得,,则,,又平面,平面,,,,平面,平面,又为矩形,,则平面,而平面,;【小问2详解】平面,且,以为坐标原点,分别以,,所在直线为,,轴建立空间直角坐标系,则,,,,,设,则,又,设平面的法向量为,由,取,得,又,,,,则.19、(1);(2).【解析】(1)由焦距为,离心率为结合性质,列出关于的方程组,求出从而求出椭圆方程;(2)设出直线方程,代入椭圆方程,求出点D、E的坐标,然后利用|BD|,|BE|,|DE|成等比数列,即可求解【详解】(1)由已知,,解得,所以椭圆的方程为(2)由(1)得过点的直线为,由,得,所以,所以,依题意,因为,,成等比数列,所以,所以,即,当时,,无解,当时,,解得,所以,解得,所以,当,,成等比数列时,【点睛】方法点睛(1)求椭圆方程的常用方法:①待定系数法;②定义法;③相关点法(2)直线与圆锥曲线的综合问题,常将直线方程代入圆锥曲线方程,从而得到关于(或)的一元二次方程,设出交点坐标),利用韦达定理得出坐标的关系,同时注意判别式大于零求出参数的范围(或者得到关于参数的不等关系),然后将所求转化到参数上来再求解.如本题及,联立即可求解.注意圆锥曲线问题中,常参数多、字母多、运算繁琐,应注意设而不求的思想、整体思想的应用.属于中档题.20、(1);(2).【解析】(1)由题意知分数小于的产品为不合格品,故有件,一共有件口罩,即可求出口罩的不合格率.(2)先利用分层抽样确定抽取的件口罩中合格产品和不合格产品的数量分别为件和件,再利用古典概型把所有基本事件种都列举出来,在判断件口罩全是合格品的事件有种情况,即可得到答案.【小问1详解】在抽取的件产品中,不合格的口罩有(件)所以口罩为不合格品的频率为,根据频率可估计该公司所生产口罩的不合格率为【小问2详解】由题意所抽取件口罩中不合格的件,合格的件设件合格口罩记为,件不合格口罩记为而从件口罩中抽取件,共有共种情况,这件口罩全是合格品的事件有共种情况故件口罩全是合格品的概率为21、(1);;(2).【解析】(1)验证可知数列是以为周期的周期数列,则,;(2)由(1)可求得,利用错位相减法可求得结果.【小问1详解】当时,;当时,;当时,;数列是以为周期的周期数列;,;【小问2详解】由(1)得:,,,,两式作差得:.22、(1)(2)(3)满足条件的直线不存在,详见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年厦门市秀德幼儿园招聘教师备考题库及一套完整答案详解
- 2026年中国葛洲坝集团(股份)有限公司招聘备考题库完整参考答案详解
- 2026年中国雄安集团有限公司招聘备考题库及完整答案详解1套
- 2026年广州医科大学附属第四医院编外人员招聘备考题库附答案详解
- 2026年中国民用航空飞行学院新津分院、广汉分院、洛阳分院秋季公开招聘工作人员17人备考题库及一套完整答案详解
- 2026年北京蔬卉科技有限责任公司总经理招聘备考题库完整答案详解
- 2026年中国疾病预防控制中心人事处招聘工作人员备考题库及答案详解参考
- 2026年东莞松山湖科学城公开招聘15人备考题库及一套答案详解
- 2026年中信证券海宁海昌南路营业部诚聘英才备考题库及答案详解参考
- 豫东名校2026届生物高一上期末统考模拟试题含解析
- 司法救助课件
- 星巴克门店运营管理标准流程手册
- 2025年苏州工业园区领军创业投资有限公司招聘备考题库及完整答案详解1套
- 2025云南昆明元朔建设发展有限公司第二批收费员招聘9人笔试考试参考题库及答案解析
- 2026年中考作文备考之10篇高分考场范文
- 【《吸尘器造型结构设计(附图)》11000字】
- 提高约束带使用规范率
- 比亚迪维修试车协议书
- 无人机吊运培训课件
- 沈阳市行道树栽植现状分析与发展对策
- 2026年中国马术行业发展现状调查、竞争格局分析及未来前景预测报告
评论
0/150
提交评论