黑龙江省哈三中等九州之巅合作体2026届数学高二上期末质量跟踪监视试题含解析_第1页
黑龙江省哈三中等九州之巅合作体2026届数学高二上期末质量跟踪监视试题含解析_第2页
黑龙江省哈三中等九州之巅合作体2026届数学高二上期末质量跟踪监视试题含解析_第3页
黑龙江省哈三中等九州之巅合作体2026届数学高二上期末质量跟踪监视试题含解析_第4页
黑龙江省哈三中等九州之巅合作体2026届数学高二上期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈三中等九州之巅合作体2026届数学高二上期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.有7名同学参加百米竞赛,预赛成绩各不相同,取前3名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道7名同学成绩的()A.平均数 B.众数C.中位数 D.方差2.已知抛物线,,点在抛物线上,记点到直线的距离为,则的最小值是()A.5 B.6C.7 D.83.若等比数列满足,,则数列的公比为()A. B.C. D.4.圆与圆公切线的条数为()A.1 B.2C.3 D.45.已知函数,.若存在三个零点,则实数的取值范围是()A. B.C. D.6.椭圆的()A.焦点在x轴上,长轴长为2 B.焦点在y轴上,长轴长为2C.焦点在x轴上,长轴长为 D.焦点在y轴上,长轴长为7.在四面体中,空间的一点满足,若共面,则()A. B.C. D.8.已知点在抛物线:上,则的焦点到其准线的距离为()A. B.C.1 D.29.已知数列是公差为等差数列,,则()A.1 B.3C.6 D.910.若数列是等比数列,且,则()A.1 B.2C.4 D.811.如图所示几何体的正视图和侧视图都正确的是()A. B.C. D.12.已知实数、满足,则的最大值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的离心率为____14.已知双曲线(a,b>0)的左、右焦点分别为F1,F2,过点F1且倾斜角为的直线l与双曲线的左、右支分别交于点A,B.且|AF2|=|BF2|,则该双曲线的离心率为____________.15.如图所示茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,若乙的总成绩是445,则污损的数字是________16.经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线l过点A(﹣3,1),且与直线4x﹣3y+t=0垂直(1)求直线l的一般式方程;(2)若直线l与圆C:x2+y2=m相交于点P,Q,且|PQ|=8,求圆C的方程18.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围19.(12分)如下图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值20.(12分)已知椭圆的左、右焦点分别为,离心率为,圆:过椭圆的三个顶点,过点的直线(斜率存在且不为0)与椭圆交于两点(1)求椭圆的标准方程(2)证明:在轴上存在定点,使得为定值,并求出定点的坐标21.(12分)如图所示,、分别为椭圆的左、右焦点,A,B为两个顶点,已知椭圆C上的点到、两点的距离之和为4.(1)求a的值和椭圆C的方程;(2)过椭圆C的焦点作AB的平行线交椭圆于P,Q,求的面积22.(10分)已知圆M的方程为.(1)写出圆M的圆心坐标和半径;(2)经过点的直线l被圆M截得弦长为,求l的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据中位数的性质,结合题设按成绩排序7选3,即可知还需明确的成绩数据信息.【详解】由题设,7名同学参加百米竞赛,要取前3名参加决赛,则成绩从高到低排列,确定7名同学成绩的中位数,即第3名的成绩便可判断自己是否能进入决赛.故选:C.2、D【解析】先求出抛物线的焦点和准线,利用抛物线的定义将转化为的距离,即可求解.【详解】由已知得抛物线的焦点为,准线方程为,设点到准线的距离为,则,则由抛物线的定义可知∵,当点、、三点共线时等号成立,∴,故选:.3、D【解析】设等比数列的公比为,然后由已知条件列方程组求解即可【详解】设等比数列的公比为,因为,,所以,所以,解得,故选:D4、D【解析】分别求出圆和圆的圆心和半径,判断出两圆的位置关系可得到公切线的条数.【详解】根据题意,圆即,其圆心为,半径;圆即,其圆心为,半径;两圆的圆心距,所以两圆相离,其公切线条数有4条;故选:D.5、B【解析】根据题意,当时,有一个零点,进而将问题转化为当时,有两个实数根,再研究函数即可得答案.【详解】解:因为存在三个零点,所以方程有三个实数根,因为当时,由得,解得,有且只有一个实数根,所以当时,有两个实数根,即有两个实数根,所以令,则,所以当时,,单调递增,当时,,单调递减,因为,,,所以的图象如图所示,所以有两个实数根,则故选:B6、B【解析】把椭圆方程化为标准方程可判断焦点位置和求出长轴长.【详解】椭圆化为标准方程为,所以,且,所以椭圆焦点在轴上,,长轴长为.故选:B.7、D【解析】根据四点共面的向量表示,可得结果.【详解】由共面知,故选:【点睛】本题主要考查空间中四点共面的向量表示,属基础题.8、B【解析】由点在抛物线上,求得参数,焦点到其准线的距离即为.【详解】由点在抛物线上,易知,,故焦点到其准线的距离为.故选:B.9、D【解析】结合等差数列的通项公式求得.【详解】设公差,.故选:D10、C【解析】根据等比数列的性质,由题中条件,求出,即可得出结果.【详解】因为数列是等比数列,由,得,所以,因此.故选:C.11、B【解析】根据侧视图,没有实对角线,正视图实对角线的方向,排除错误选项,得到答案.【详解】侧视时,看到一个矩形且不能有实对角线,故A,D排除而正视时,有半个平面是没有的,所以应该有一条实对角线,且其对角线位置应从左上角画到右下角,故C排除.故选:B.12、A【解析】作出可行域,利用代数式的几何意义,利用数形结合可求得的最大值.【详解】作出不等式组所表示的可行域如下图所示:联立可得,即点,代数式的几何意义是连接可行域内一点与定点连线的斜率,由图可知,当点在可行域内运动时,直线的倾斜角为锐角,当点与点重合时,直线的倾斜角最大,此时取最大值,即.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意得:考点:双曲线离心率14、【解析】由双曲线的定义和直角三角形的勾股定理,以及解直角三角形,可得a,c的关系,再由离心率公式可得所求值【详解】过F2作F2N⊥AB于点N,设|AF2|=|BF2|=m,因为直线l的倾斜角为,所以在直角三角形F1F2N中,,由双曲线的定义可得|BF1|﹣|BF2|=2a,所以|BF1|=2a+m,同理可得|AF1|=m﹣2a,所以|AB|=|BF1|﹣|AF1|=4a,即|AN|=2a,所以|AF1|=c﹣2a,因此,在直角三角形ANF2中,|AF2|2=|NF2|2+|AN|2,所以(c)2=4a2+c2,所以c=a,则,故答案为:15、3【解析】设污损的叶对应的成绩是x,由茎叶图可得445=83+83+87+x+99,解得x=93,故污损的数字是3.考点:茎叶图.16、4x+3y-6=0【解析】直接求出两直线l1:x﹣2y+4=0和l2:x+y﹣2=0的交点P的坐标,求出直线的斜率,然后求出所求直线方程【详解】由方程组可得P(0,2)∵l⊥l3,∴kl=﹣,∴直线l的方程为y﹣2=﹣x,即4x+3y-6=0故答案为:4x+3y-6=0三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直关系得过直线l斜率,由点斜式化简即可求解l的一般式方程;(2)结合勾股定理建立弦心距(由点到直线距离公式求解),半弦长,圆半径的基本关系,解出,即可求解圆C的方程【小问1详解】因为直线l与直线4x﹣3y+t=0垂直,所以直线l的斜率为,故直线l的方程为,即3x+4y+5=0,因此直线l的一般式方程为3x+4y+5=0;【小问2详解】圆C:x2+y2=m的圆心为(0,0),半径为,圆心(0,0)到直线l的距离为,则半径满足m=42+12=17,即m=17,所以圆C:x2+y2=1718、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.19、(1);(2)证明见解析.【解析】(1)根据离心率为可得,把代入方程可得,又,解方程组即可求得方程;(2)设直线的方程为,整理方程组,求得,及参数的范围,由斜率公式表示出,结合直线方程和韦达定理整理即可得到定值.试题解析:(1)由题意,可得,代入得,又,解得,,所以椭圆的方程为.(2)证明:设直线的方程为,又,,三点不重合,∴,设,,由得,所以,解得,,①,②设直线,的斜率分别为,,则(),分别将①②式代入(),得,所以,即直线,的斜率之和为定值考点:椭圆的标准方程及直线与椭圆的位置关系.【方法点睛】本题主要考查了椭圆的标准方程及直线与椭圆的位置关系,考查了方程的思想和考试与运算能力,属于中档题.求椭圆方程通常用待定系数法,注意隐含条件;研究圆锥曲线中的定值问题,通常根据交点与方程组解得对应性,设而不解,表示出待求定值的表达式,利用韦达定理代入整理,消去参数即可得到定值.20、(1);(2)见解析,定点【解析】(1)先判断圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即.再由求即可.(2)设在轴上存在定点,使得为定值,根据题意,设直线的方程为,联立可得,再运算将韦达定理代入化简有与k无关即可.【详解】(1)由圆方程中的时,的两根不为相反数,故可设圆经过椭圆的上、下顶点和右顶点,令圆方程中的,得,即有又,解得∴椭圆的标准方程为(2)证明:设在轴上存在定点,使得为定值,由(1)可得,设直线的方程为,联立可得,设,则,,要使为定值,只需,解得∴在轴上存在定点,使得为定值,定点的坐标为【点睛】本题主要考查椭圆的几何性质和直线与椭圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题.21、(1)a=2,(2)【解析】(1)由题意可得a=2,,求出,从而可求得椭圆方程,(2)由题意可求出的坐标,则可求出直线PQ的方程,然后将直线方程与椭圆方程联立,消去,利用根与系数的关系,求出的值,从而可求出的值【小问1详解】由椭圆定义可得2a=4,所以a=2,又因点在椭圆C上,所以,解得:,所以a的值为2,椭圆C的方程为【小问2详解】由椭圆的方程可得,,,所以,所以直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论