版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届广东省梅州市五华县数学高二上期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知分别表示随机事件发生的概率,那么是下列哪个事件的概率()A事件同时发生B.事件至少有一个发生C.事件都不发生D事件至多有一个发生2.已知双曲线(,)的左,右焦点分别为,.若双曲线右支上存在点,使得与双曲线的一条渐近线垂直并相交于点,且,则双曲线的渐近线方程为()A. B.C. D.3.已知,若是函数一个零点,则的值为()A.0 B.C.1 D.4.如下图,边长为2的正方体中,O是正方体的中心,M,N,T分别是棱BC,,的中点,下列说法错误的是()A. B.C. D.到平面MON的距离为15.已知,为椭圆上关于短轴对称的两点,、分别为椭圆的上、下顶点,设,、分别为直线,的斜率,则的最小值为()A. B.C. D.6.若数列是等差数列,其前n项和为,若,且,则等于()A. B.C. D.7.已知两圆相交于两点和,两圆的圆心都在直线上,则的值为A. B.2C.3 D.08.均匀压缩是物理学一种常见现象.在平面直角坐标系中曲线均匀压缩,可用曲线上点的坐标来描述.设曲线上任意一点,若将曲线纵向均匀压缩至原来的一半,则点的对应点为.同理,若将曲线横向均匀压缩至原来的一半,则曲线上点的对应点为.若将单位圆先横向均匀压缩至原来的一半,再纵向均匀压缩至原来的,得到的曲线方程为()A. B.C. D.9.设等差数列的前项和为,若,则的值为()A.28 B.39C.56 D.11710.下列双曲线中,焦点在轴上且渐近线方程为的是A. B.C. D.11.设R,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知空间四个点,,,,则直线AD与平面ABC所成的角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.数列满足,,则___________.14.若函数在(0,+∞)内有且只有一个零点,则a的值为_____15.如图,某湖有一半径为的半圆形岸边,现决定在圆心O处设立一个水文监测中心(大小忽略不计),在其正东方向相距的点A处安装一套监测设备.为了监测数据更加准确,在半圆弧上的点B以及湖中的点C处,再分别安装一套监测设备,且,.定义:四边形及其内部区域为“直接监测覆盖区域”,设.则“直接监测覆盖区域”面积的最大值为________16.已知为直线上的动点,为函数图象上的动点,则的最小值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,过右焦点作直线交于,其中的周长为的离心率为.(1)求的方程;(2)已知的重心为,设和的面积比为,求实数的取值范围.18.(12分)如图,四棱锥中,底面是边长为2的正方形,,,且,为的中点(1)求平面与平面夹角的余弦值;(2)在线段上是否存在点,使得点到平面的距离为?若存在,确定点的位置;若不存在,请说明理由19.(12分)曲线的左、右焦点分别为,左、右顶点分别为,C上的点M满足,且直线的斜率之积等于(1)求C的方程;(2)过点的直线l交C于A,B两点,若,其中,证明:20.(12分)同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体)(1)求两颗骰子向上的点数相等的概率;(2)求两颗骰子向上的点数不相等,且一个点数是另一个点数的整数倍的概率21.(12分)已知点、分别是椭圆C:)的左、右焦点,点P在椭圆C上,当∠PF1F2=时,面积达到最大,且最大值为.(1)求椭圆C的标准方程;(2)设直线l:与椭圆C交于A、B两点,求面积的最大值.22.(10分)已知命题p:实数x满足(其中);命题q:实数x满足(1)若,为真命题,求实数x的取值范围;(2)若p是q的充分条件,求实数的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】表示事件至少有一个发生概率,据此得到答案.【详解】分别表示随机事件发生的概率,表示事件至少有一个发生的概率,故表示事件都不发生的概率.故选:C.2、B【解析】利用渐近线方程和直线解出Q点坐标,再由得P点坐标,代入双曲线方程得到a、b、c的齐次式可解.【详解】如图,因为与渐近线垂直所以的斜率为,方程为解的Q的坐标为设P点坐标为则,因为,所以,得点P坐标为,代入得:所以,即所以渐近线方程为故选:B.3、A【解析】首先根据题意求出,然后设函数,利用以及的单调性,并结合对数运算即可求解.【详解】由题意可知,,所以,不妨设,(),故,从而,易知在上单调递增,故,即,从而.故选:A.4、D【解析】建立空间直角坐标系,进而根据空间向量的坐标运算判断A,B,C;对D,算出平面MON的法向量,进而求出向量在该法向量方向上投影的绝对值,即为所求距离.【详解】如图建立空间直角坐标系,则.对A,,则,则A正确;对B,,则,则B正确;对C,,则C正确;对D,设平面MON的法向量为,则,取z=1,得,,所以到平面MON的距离为,则D错误.故选:D.5、A【解析】设出点,的坐标,并表示出两个斜率、,把代数式转化成与点的坐标相关的代数式,再与椭圆有公共点解决即可.【详解】椭圆中:,设则,则,,令,则它对应直线由整理得由判别式解得即,则的最小值为故选:A6、B【解析】由等差数列的通项公式和前项和公式求出的首项和公差,即可求出.【详解】设等差数列的公差为,则解得:,所以.故选:B.7、C【解析】根据条件知:两圆的圆心的所在的直线与两圆的交点所在的直线垂直,以及两圆的交点的中点在两圆的圆心的所在的直线上,由此得到方程,得解.【详解】由已知两圆的交点与两圆的圆心的所在的直线垂直,,所以,又因为两圆的交点的中点在两圆的圆心所在的直线上,所以,解得:,所以,故选.【点睛】此题主要考查圆与圆的位置关系,解答此题的关键是需知两圆的圆心所在的直线与两圆的交点所在的直线垂直,并且两圆的交点的中点在两圆的圆心所在的直线上,此题属于基础题.8、C【解析】设单位圆上一点为,经过题设变换后坐标为,则,代入圆的方程即可得曲线方程.【详解】由题设,单位圆上一点坐标为,经过横向均匀压缩至原来的一半,纵向均匀压缩至原来的,得到对应坐标为,∴,则,故中,可得:.故选:C.9、B【解析】由已知结合等差数列的求和公式及等差数列的性质即可求解.【详解】因为等差数列中,,则.故选:B.10、C【解析】焦点在轴上的是C和D,渐近线方程为,故选C考点:1.双曲线的标准方程;2.双曲线的简单几何性质11、A【解析】根据不等式性质判断即可.【详解】若“”,则成立;反之,若,当,时,不一定成立.如,但.故“”是“”的充分不必要条件.故答案为:A.【点睛】本题考查充分条件、必要调价的判断,考查不等式与不等关系,属于基础题.12、A【解析】根据向量法求出线面角即可.【详解】设平面的法向量为,直线AD与平面ABC所成的角为令,则则故选:A【点睛】本题主要考查了利用向量法求线面角,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题中所给的递推式得到数列具有周期性,进而得到结果.【详解】根据题中递推式知,可知数列具有周期性,周期为3,因为故故答案为:14、a=3【解析】对函数进行求导,分类讨论函数单调性,根据单调性结合已知可以求出a的值.【详解】∵函数在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()1=0,解得a=3故答案为:a=3【点睛】本题考查了利用导数研究已知函数的零点求参数取值问题,考查了分类讨论和数学运算能力.15、【解析】由题意,根据余弦定理得的值,则四边形的面积表示为,再代入面积公式化简为三角函数,根据三角函数的性质求解最大值即可.【详解】在中,,,,,,则(其中),当时,取最大值,所以“直接监测覆盖区域”面积的最大值.故答案为:.【点睛】解答本题的关键是将四边形的面积表示为,代入面积公式后化简得三角函数的解析式,再根据三角函数的性质求解最大值.16、【解析】求得的导数,由题意可得与直线平行的直线和曲线相切,然后求出的值最小,设出切点,求出切线方程,再由两直线平行的距离公式,得到的最小值【详解】解:函数的导数为,设与直线平行的直线与曲线相切,设切点为,则,所以,所以,所以,所以,所以切线方程为,可得的最小值为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)已知焦点弦三角形的周长,以及离心率求椭圆方程,待定系数直接求解即可.(2)第一步设点设直线,第二步联立方程韦达定理,第三步条件转化,利用三角形等面积法,列方程,第四步利用韦达定理进行转化,计算即可.【小问1详解】因为的周长为,的离心率为,所以,,所以,,又,所以椭圆的方程为.【小问2详解】方法一:,,的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.令,②则,可得当时,当时,所以,又解得③由①②③得,解得.所以实数的取值范围是.方法二:同方法一可得的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.所以因为,所以解得②由①②解得.所以实数的取值范围是.18、(1)(2)存在,点为线段的靠近点的三等分点【解析】(1)根据题意证得平面,进而证得平面,得到平面,以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,求得平面和平面的法向量,结合向量的夹角公式,即可求解;(2)设点,求得平面的法向量为,结合向量的距离公式列出方程,求得的值,即可得到答案.【小问1详解】解:因为四边形为正方形,则,,由,,,所以平面,因为平面,所以,又由,,,所以平面,又因为平面,所以,因为且平面,所以平面,由平面,且,不妨以点为坐标原点,,,所在直线分别为轴、轴和轴建立空间直角坐标系,如图所示,则,,,,可得,,,设平面的法向量为,则,取,可得,所以,易得平面的法向量为,则,由平面与平面夹角为锐角,所以平面与平面夹角的余弦值【小问2详解】解:设点,可得,,设平面的法向量为,则,取,可得,所以,所以点到平面的距离为,解得,即或因为,所以故当点为线段的靠近点的三等分点时,点到平面的距离为.19、(1)(2)证明见解析【解析】(1)由椭圆定义可得到,再利用斜率公式及直线的斜率之积等于,列出方程,化简对比系数可得;(2)分直线l的斜率为0和不为0两种情况讨论,利用可得到T在定直线上,且该直线是的中垂线即可得到证明.【小问1详解】因为C上的点M满足,所以C表示焦点在x轴上的椭圆,且,即,,所以,设,则,①所以直线的斜率,直线的斜率,由已知得,即,②由①②得,所以C的方程为【小问2详解】当直线l的斜率为0时,A与重合,B与重合,,,成立.当直线l的斜率不为0时,设l的方程为联立方程组,消x整理得所以,解得或设,则,由,得,所以设,由,得,所以,所以,所以点T在直线上,且,所以是等腰三角形,且,所以,综上,【点睛】关键点点晴:本题第二问突破点是证明T在定直线上,且该直线是的垂直平分线,从而得到,考查学生的数学运算能力,转化化归思想.20、(1);(2).【解析】(1)求出同时掷两颗骰子的基本事件数、及骰子向上的点数相等的基本事件数,应用古典概型的概率求法,求概率即可.(2)列举出两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数的基本事件,应用古典概型的概率求法,求概率即可.【小问1详解】同时掷两颗骰子包括的基本事件共种,掷两颗骰子向上的点数相等包括的基本事件为6种,故所求的概率为;【小问2详解】两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数时,用坐标记为,,,,,,,,,,,,,,,,共包括16个基本事件,故两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数有的概率为.21、(1)(2)3【解析】(1)根据焦点三角形的性质可求出,从而可得标准方程,(2)联
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年智能洗地机项目公司成立分析报告
- 水质净化新材料应用方案
- 市场需求突变下基于成本共享的供应链契约协调:理论与实践新探
- 施工现场临时设施管理
- 桥梁施工方案动态调整
- 河道水生态安全评估
- 医院污水管网堵塞治理及液位监测预警研究
- 施工现场梯子与脚手架管理
- 甘谷交警安全知识培训课件
- 涉密数据销毁流程规定
- 儿科专科建设与发展规划指南
- 煤矿基本知识培训课件
- GB/T 9754-2025色漆和清漆20°、60°和85°光泽的测定
- 运输合同转包协议书范本
- 碳排放监测与控制技术-洞察阐释
- 回顾性研究设计及写作要点
- 中药储存养护管理制度
- T/CECS 10128-2021不锈钢二次供水水箱
- 2025届山东省临沂市高三二模生物试题(解析版)
- 专利侵权诉讼合同范例
- 银行审计试题解析及答案
评论
0/150
提交评论