版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西南大学附中2026届高二上数学期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知两条直线:,:,且,则的值为()A.-2 B.1C.-2或1 D.2或-12.已知等比数列的前项和为,则关于的方程的解的个数为()A.0 B.1C.无数个 D.0或无数个3.在等差数列中,,,则()A. B.C. D.4.已知,则下列不等式一定成立的是()A B.C. D.5.若曲线与曲线在公共点处有公共切线,则实数()A. B.C. D.6.已知数列是等比数列,,是函数的两个不同零点,则()A.16 B.C.14 D.7.已知函数f(x)=x(lnx-ax)有两个极值点,则实数a的取值范围是()A.(-∞,0) B.C.(0,1) D.(0,+∞)8.某校去年有1100名同学参加高考,从中随机抽取50名同学总成绩进行分析,在这个调查中,下列叙述错误的是A.总体是:1100名同学的总成绩 B.个体是:每一名同学C.样本是:50名同学的总成绩 D.样本容量是:509.椭圆的焦点坐标为()A., B.,C., D.,10.已知抛物线的焦点为,为抛物线上第一象限的点,若,则直线的倾斜角为()A. B.C. D.11.在长方体中,,,则异面直线与所成角的正弦值是()A. B.C. D.12.下列直线中,倾斜角为锐角的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点,圆:.若过点的圆的切线只有一条,求这条切线方程____________.14.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.15.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第七个孩子分得斤数为___________.16.已知点和,圆,当圆C与线段没有公共点时,则实数m的取值范围为___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)求的单调递减区间;(Ⅱ)若当时,恒成立,求实数a的取值范围.18.(12分)已知函数,其中为实数.(1)若函数的图像在处的切线与直线平行,求函数的解析式;(2)若,求在上的最大值和最小值.19.(12分)已知双曲线及直线(1)若与有两个不同的交点,求实数的取值范围(2)若与交于,两点,且线段中点的横坐标为,求线段的长20.(12分)已知.(1)当时,求曲线在点处的切线方程;(2)若在处取得极值,求在上的最小值.21.(12分)已知圆(1)若直线与圆C相交于A、B两点,当弦长最短时,求直线l的方程;(2)若与圆C相外切且与y轴相切的圆的圆心记为D,求D点的轨迹方程22.(10分)已知函数.(1)若,讨论函数的单调性;(2)当时,求在区间上的最小值和最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】两直线平行,倾斜角相等,斜率均不存在或斜率存在且相等,据此即可求解.【详解】:,:斜率不可能同时不存在,∴和斜率相等,则或,∵m=-2时,和重合,故m=1.另解:,故m=1.故选:B.2、D【解析】利用等比数列的求和公式讨论公比的取值即得.【详解】设等比数列的公比为,当时,,因为,所以无解,即方程的解的个数为0,当时,,所以时,方程有无数个偶数解,当时,方程无解,综上,关于的方程的解的个数为0或无数个.故选:D.3、B【解析】利用等差中项的性质可求得的值,进而可求得的值.【详解】由等差中项的性质可得,则.故选:B.4、B【解析】运用不等式的性质及举反例的方法可求解.【详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B5、A【解析】设公共点为,根据导数的几何意义可得出关于、的方程组,即可解得实数、的值.【详解】设公共点为,的导数为,曲线在处的切线斜率,的导数为,曲线在处的切线斜率,因为两曲线在公共点处有公共切线,所以,且,,所以,即解得,所以,解得,故选:A6、B【解析】由题意得到,根据等比数列的性质得到,化简,即可求解.【详解】由,是函数的两个不同零点,可得,根据等比数列的性质,可得则.故选:B.7、B【解析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点则实数a的取值范围是(0,)故选B8、B【解析】采用逐一验证法,根据总体,个体,样本的概念,可得结果.【详解】据题意:总体是1100名同学的总成绩,故A正确个体是每名同学的总成绩,故B错样本是50名同学的总成绩,故C正确样本容量是:50,故D正确故选:B【点睛】本题考查总体,个体,样本的概念,属基础题.9、A【解析】由题方程化为椭圆的标准方程求出c,则椭圆的焦点坐标可求【详解】由题得方程可化为,所以所以焦点为故选:A.10、C【解析】设点,其中,,根据抛物线的定义求得点的坐标,即可求得直线的斜率,即可得解.【详解】设点,其中,,则,可得,则,所以点,故,因此,直线的倾斜角为.故选:C.11、C【解析】连接,可得,得到异面直线与所成角即为直线与所成角,设,设,求得的值,在中,利用余弦定理,即可求解.【详解】如图所示,连接,在正方体中,可得,所以异面直线与所成角即为直线与所成角,设,由在长方体中,,,设,可得,在直角中,可得,在中,可得,所以,因为,所以.故选:C.12、A【解析】先由直线方程找到直线的斜率,再推导出直线的倾斜角即可.【详解】选项A:直线的斜率,则直线倾斜角为,是锐角,判断正确;选项B:直线的斜率,则直线倾斜角为钝角,判断错误;选项C:直线的斜率,则直线倾斜角为0,不是锐角,判断错误;选项D:直线没有斜率,倾斜角为直角,不是锐角,判断错误.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】由题设知A在圆上,代入圆的方程求出参数a,结合切线的性质及点斜式求切线方程.【详解】因为过的圆的切线只有一条,则在圆上,所以,则,且切线斜率,即,所以切线方程或,整理得或.故答案为:或.14、2【解析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.15、167【解析】由题设知8个孩子分得斤数是公差为17的等差数列,设第一个孩子分得斤,应用等差数列前n项和公式求,进而由等差数列通项公式求即可.【详解】由题意,设第一个孩子分得斤,则,所以,可得,故斤.故答案为:167.16、【解析】当点和都在圆的内部时,结合点与圆的位置关系得出实数m的取值范围,再由圆心到直线的距离大于半径得出实数m的取值范围.【详解】当点和都在圆的内部时,,解得或直线的方程为,即圆心到直线的距离为,当圆心到直线的距离大于半径时,,且.综上,实数m的取值范围为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)单调递减区间为;(Ⅱ).【解析】(Ⅰ)求函数的导函数,求的区间即为所求减区间;(Ⅱ)化简不等式,变形为,即求,令,求的导函数判断的单调性求出最小值,可求出的范围.【详解】(Ⅰ)由题可知.令,得,从而,∴的单调递减区间为.(Ⅱ)由可得,即当时,恒成立.设,则.令,则当时,.∴当时,单调递增,,则当时,,单调递减;当时,,单调递增.∴,∴.【点睛】思路点睛:在函数中,恒成立问题,可选择参变分离的方法,分离出参数转化为或,转化为求函数的最值求出的范围.18、(1)(2),【解析】(1)根据平行关系得到切线斜率,进而得到导函数在处的函数值,列出方程,求出,进而得到函数解析式;(2)先由求出,再利用导函数求单调性和最值.【小问1详解】,.由题意得:,解得:.,【小问2详解】,则,解得,,,当,解得:,即函数在单调递减,当,解得:或,即函数分别在,递增.又,,,,,.19、(1)且;(2)【解析】(1)联立直线与双曲线方程,利用方程组与两个交点,求出k的范围(2)设交点A(x1,y1),B(x2,y2),利用韦达定理以及弦长公式求解即可【详解】(1)联立y=2可得∵与有两个不同的交点,且,且(2)设,由(1)可知,又中点的横坐标为,,或又由(1)可知,为与有两个不同交点时,20、(1);(2).【解析】(1)利用导数的几何意义求切线的斜率,再利用点斜式方程即可求出切线方程;(2)根据极值点求出的值,根据导数值的正负判断函数的单调性,即可求出最小值.【小问1详解】∵,,∴∴∴在处的切线为,即;【小问2详解】∵,由题可知,∴,∴单调递增,单调递减,∵,,∴.21、(1)(2)【解析】(1)先求出直线过的定点,再根据弦长|AB|最短时,求解.(2)用直译法求解【小问1详解】直线即,所以直线过定点.当弦长|AB|最短时,因为直线PC的斜率所以此时直线的斜率所以当弦长|AB|最短时,求直线的方程为,即【小问2详解】设,易知圆心D在轴上方,圆D半径为因为圆与圆外切,所以即整理得点的轨迹方程为22、(1)在和上单调递增,在上单调递减.(2)答案见解析.【解析】(1)求解导函数,并求出的两根,得和的解集,从而得函数单调性;(2)由(1)得函数的单调性,从而得最小值,计算,再分类讨论与两种情况下的最大值.【小问1详解】函数定义域为,,时,或,因为,所以,时,或,时,,所以函数在和上单调递增,在上单调递减.【小问2详解】因为,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某著名企业经纪人岗前辅导P14
- 某著名企业-华融地产建议书
- 《GBT 14593-2008山羊绒、绵羊毛及其混合纤维定量分析方法 扫描电镜法》专题研究报告
- 《GBT 21728-2008砖茶含氟量的检测方法》专题研究报告
- 《GBT 15192-2008纺织机械用图形符号》专题研究报告
- 道路安全专题培训内容课件
- 道德课件介绍
- 迪拜港口介绍
- 肺动脉闭锁伴室间隔完整患者管理专家共识(附诊断与治疗策略)
- 达达安全培训操作流程课件
- (2025)70周岁以上老年人换长久驾照三力测试题库(附答案)
- 昆山钞票纸业有限公司2026年度招聘备考题库附答案详解
- 2025年巴楚县辅警招聘考试备考题库附答案
- 2026云南省产品质量监督检验研究院招聘编制外人员2人考试参考试题及答案解析
- GB/T 46793.1-2025突发事件应急预案编制导则第1部分:通则
- 老人再婚协议书
- 泥浆护壁成孔灌注桩施工操作规程
- 舞台灯光效果课件
- 2026元旦主题班会:马年猜猜乐马年成语教学课件
- 胆管恶性肿瘤病例分析
- 甲方土建工程师述职报告
评论
0/150
提交评论