版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省德阳市2026届高一数学第一学期期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集是()A.或 B.或C. D.2.如图是一个体积为10的空间几何体的三视图,则图中的值为()A2 B.3C.4 D.53.给出下列四种说法:①若平面,直线,则;②若直线,直线,直线,则;③若平面,直线,则;④若直线,,则.其中正确说法的个数为()A.个 B.个C.个 D.个4.已知函数,是函数的一个零点,且是其图象的一条对称轴.若是的一个单调区间,则的最大值为A.18 B.17C.15 D.135.设,,,则A. B.C. D.6.已知函数恰有2个零点,则实数a取值范围是()A. B.C. D.7.一钟表的秒针长,经过,秒针的端点所走的路线长为()A. B.C. D.8.在中,如果,,,则此三角形有()A.无解 B.一解C.两解 D.无穷多解9.已知命题:,,则是()A., B.,C., D.,10.已知集合A={t2+s2|t,s∈Z},且x∈A,y∈A,则下列结论正确的是Ax+y∈AB.x-y∈AC.xy∈AD.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,其所有的零点依次记为,则_________.12.设、、为的三个内角,则下列关系式中恒成立的是__________(填写序号)①;②;③13.若存在常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立(或和恒成立),则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数b的取值范围是______14.已知圆柱的底面半径为,高为2,若该圆柱的两个底面的圆周都在一个球面上,则这个球的表面积为______15.已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),则BC边上的中线AD所在的直线方程为_____16.在中,,,与的夹角为,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,(1)求的值;(2)求函数的单调递增区间;(3)求在区间上的最大值和最小值18.在△中,的对边分别是,已知,.(1)若△的面积等于,求;(2)若,求△的面积.19.在平面直角坐标系中,为坐标原点,已知两点、在轴的正半轴上,点在轴的正半轴上.若,()求向量,夹角的正切值()问点在什么位置时,向量,夹角最大?20.(1)化简:;(2)已知,求的值.21.某城市户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】把不等式左边的二次三项式因式分解后求出二次不等式对应方程的两根,利用二次不等式的解法可求得结果【详解】由,得,解得或所以原不等式的解集为或故选:A2、A【解析】由已知可得:该几何体是一个四棱锥和四棱柱的组合体,其中棱柱的体积为:3×2×1=6,棱锥的体积为:×3×2×x=2x则组合体的体积V=6+2x=10,解得:x=2,故选A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.3、D【解析】根据线面关系举反例否定命题,根据面面平行定义证命题正确性.【详解】若平面,直线,则可异面;若直线,直线,直线,则可相交,此时平行两平面交线;若直线,,则可相交,此时平行两平面交线;若平面,直线,则无交点,即;选D.【点睛】本题考查线面平行关系,考查空间想象能力以及简单推理能力.4、D【解析】由已知可得,结合,得到(),再由是的一个单调区间,可得T,即,进一步得到,然后对逐一取值,分类求解得答案【详解】由题意,得,∴,又,∴()∵是一个单调区间,∴T,即,∵,∴,即①当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;②当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;③当,即时,,,∴,∵,∴,此时在上单调递增,∴符合题意,故选D【点睛】本题主要考查正弦型函数的单调性,对周期的影响,零点与对称轴之间的距离与周期的关系,考查分类讨论的数学思想方法,考查逻辑思维能力与推理运算能力,结合选项逐步对系数进行讨论是解决该题的关键,属于中档题.5、C【解析】利用有理指数幂与对数的运算性质分别比较,,与1和2的大小得答案【详解】∵,且,,,∴故选C【点睛】本题考查对数值的大小比较,考查有理指数幂与对数的运算性质,寻找中间量是解题的关键,属于基础题6、D【解析】由在区间上单调递减,分类讨论,,三种情况,根据零点个数求出实数a的取值范围.【详解】函数在区间上单调递减,且方程的两根为.若时,由解得或,满足题意.若时,,,当时,,即函数在区间上只有一个零点,因为函数恰有2个零点,所以且.当时,,,此时函数有两个零点,满足题意.综上,故选:D7、C【解析】计算出秒针的端点旋转所形成的扇形的圆心角的弧度数,然后利用扇形的弧长公式可计算出答案.【详解】秒针的端点旋转所形成的扇形的圆心角的弧度数为,因此,秒针的端点所走的路线长.故选:C.【点睛】本题考查扇形弧长的计算,计算时应将扇形的圆心角化为弧度数,考查计算能力,属于基础题.8、A【解析】利用余弦定理,结合一元二次方程根的判别式进行求解即可.【详解】由余弦定理可知:,该一元二次方程根的判别式,所以该一元二次方程没有实数根,故选:A9、D【解析】根据命题的否定的定义写出命题的否定,然后判断【详解】命题:,的否定是:,故选:D10、C【解析】∵集合A={t2+s2∣∣t,s∈Z},∴1∈A,2∈A,1+2=3∉A,故A“x+y∈A”错误;又∵1−2=−1∉A,故B“x−y∈A”错误;又∵,故D“∈A”错误;对于C,由,设,且.则.且,所以.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积.【详解】函数的零点即所以去绝对值可得或即或去绝对值可得或,或当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得综上可得所有零点的乘积为故答案为:【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题.12、②、③【解析】因为是的内角,故,,从而,,,故选②、③.点睛:三角形中各角的三角函数关系,应注意利用这个结论.13、【解析】由已知可得、恒成立,利用一元二次不等式的解法和基本不等式即可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以当时,可得对任意的恒成立,则,即,所以;当时,对恒成立,即恒成立,又当时,,当且仅当即时等号成立,所以,综上所述,实数的取值范围是.故答案为:.14、【解析】直接利用圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,利用勾股定理求出的值,然后利用球体的表面积公式可得出答案【详解】设球的半径为,由圆柱的性质可得,圆柱的底面直径,高、球体的直径构成直角三角形其中为斜边,因为圆柱的底面半径为,高为2,所以,,因此,这个球的表面积为,故答案为【点睛】本题主要圆柱的几何性质,考查球体表面积的计算,意在考查空间想象能力以及对基础知识的理解与应用,属于中等题15、【解析】求出的坐标后可得的直线方程.【详解】的坐标为,故的斜率为,故直线的方程为即,故答案为:16、【解析】利用平方运算可将问题转化为数量积和模长的运算,代入求得,开方得到结果.【详解】【点睛】本题考查向量模长的求解问题,关键是能够通过平方运算将问题转变为向量的数量积和模长的运算,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)(3)最大值为2,最小值为-1.【解析】(1)直接利用函数的关系式求出函数的值;(2)利用整体代换发即可求出函数的单调增区间;(3)结合(2),利用函数的定义域求出函数的单调性,进而即可求出函数的最大、小值.【小问1详解】由,得;【小问2详解】令,整理,得,故函数的单调递增区间为;【小问3详解】由,得,结合(2)可知,函数的单调递增区间为,所以函数在上单调递增,在上单调递减,故当时,函数取得最小值,且最小值为,当时,函数取得最大值,且最大值为.18、(1);(2).【解析】(1)先根据条件可得到,由三角形的面积可得,与联立得到方程组后可解得.(2)由可得,分和两种情况分别求解,最后可得的面积为试题解析:(1)∵,,∴,∴,又,∴,∵△的面积,∴,由,解得.(2)由,得得,∴或①当时,则,由(1)知,,又∴.∴;②当时,则,代入,得,,∴.综上可得△的面积为.点睛:解答本题(2)时,在得到后容易出现的错误是将直接约掉,这样便失掉了三角形的一种情况,这是在三角变换中经常出现的一种错误.为此在判断三角形的形状或进行三角变换时,在遇到需要约分的情况时,需要考虑约掉的部分是否为零,不要随意的约掉等式两边的公共部分19、(1)见解析;(2)见解析.【解析】分析:()设向量与轴的正半轴所成的角分别为,则向量所成的夹角为,由两角差的正切公式可得向量夹角的正切值为;()由(1)知,利用基本不等式即可的结果.详解:(1)由题意知,A的坐标为A(0,6),B的坐标为B(0,4),C(x,0),x>0设向量,与x轴的正半轴所成的角分别为α,β,则向量,所成的夹角为|β﹣α|=|α﹣β|,由三角函数的定义知:tanα=,tanβ=,由公式tan(α﹣β)=,得向量,的夹角的正切值等于tan(α﹣β)==,故所求向量,夹角的正切值为tan(α﹣β)=;(2)由(1)知tan(α﹣β)==≤=,所以tan(α﹣β)的最大值为时,夹角|α﹣β|的值也最大,当x=时,取得最大值成立,解得x=2,故点C在x的正半轴,距离原点为2,即点C的坐标为C(2,0)时,向量,夹角最大点睛:本题主要考查利用平面向量的夹角、两角差的正切公式以及基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).20、(1)-1(2)-3【解析】(1)根号下是,开方后注意,而,从而所求值为.(2)利用诱导公式原式可以化简为,再分子分母同时除以,就可以得到一个关于的分式,代入其值就可以得到所求值为.解析:(1).(2).21、(1);(2),;(3)【解析】(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数试题解析:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方图中x的值是0.0075.-------------3分(2)月平均用电量的众数是=230.-------------5分因为(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年智能黑色固定包胶哑铃项目评估报告
- 2026年微生物组疗法项目营销方案
- 2026年美容射频探头项目商业计划书
- 2026年智能厨房监控摄像头项目公司成立分析报告
- 含氟烷烃生产工操作能力模拟考核试卷含答案
- 重冶净化工冲突解决模拟考核试卷含答案
- 道路危险货物运输员岗前技能理论考核试卷含答案
- 2026年安全生产百日行动工作总结
- 合成氨二氧化碳回收工安全操作水平考核试卷含答案
- 电池测试工安全培训竞赛考核试卷含答案
- 2026年大连职业技术学院单招职业技能笔试参考题库带答案解析
- 员工通勤安全培训课件
- (自2026年1月1日起施行)《增值税法实施条例》的重要变化解读
- 2025年游戏陪玩分成协议
- 全国秸秆综合利用重点县秸秆还田监测工作方案
- 2026年内蒙古化工职业学院单招职业适应性考试参考题库及答案解析
- 国家事业单位招聘2024国家水利部小浪底水利枢纽管理中心招聘事业单位人员拟聘用人员笔试历年参考题库典型考点附带答案详解(3卷合一)
- 核生化应急救援中心火灾预案
- 25数五上数学人教版期末押题卷5套
- 2026年辽宁金融职业学院单招职业适应性测试题库及参考答案详解
- 2026年教师资格之中学综合素质考试题库500道及完整答案【名师系列】
评论
0/150
提交评论