版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山西省山大附中高一上数学期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下图是函数的部分图象,则()A. B.C. D.2.已知函数的部分图象如图所示,下列结论正确的个数是()①②将的图象向右平移1个单位,得到函数的图象③的图象关于直线对称④若,则A.0个 B.1个C.2个 D.3个3.已知,条件:,条件:,则是的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知正实数满足,则最小值为A. B.C. D.5.已知,,,则()A. B.C. D.26.已知角的终边在射线上,则的值为()A. B.C. D.7.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数图象的一条对称轴是()A. B.C. D.8.函数的图象是()A. B.C. D.9.为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”,计费方法如下表:每户每月用水量水价不超过12m3的部分3元/m3超过12m3但不超过18m3的部分6元/m3超过18m3的部分9元/m3若某户居民本月缴纳的水费为90元,则此户居民本月的用水量为()A.17 B.18C.19 D.2010.已知函数,,其中,若,,使得成立,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若,则与的夹角为______12.若函数y=是函数的反函数,则_________________13.若,则___________;14.已知,若,则实数的取值范围为__________15.角的终边经过点,则的值为______16.已知向量满足,且,则与的夹角为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)求的值;(2)求的值.18.已知,函数(1)求的定义域;(2)当时,求不等式的解集19.如图,以轴的非负半轴为始边作角与,它们的终边分别与单位圆相交于点,已知点的横坐标为(1)求的值;(2)若,求的值20.已知直线l:与x轴交于A点,动圆M与直线l相切,并且和圆O:相外切求动圆圆心M的轨迹C的方程若过原点且倾斜角为的直线与曲线C交于M、N两点,问是否存在以MN为直径的圆过点A?若存在,求出实数m的值;若不存在,说明理由21.已知函数(且).(1)当时,,求的取值范围;(2)若在上最小值大于1,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由图象求出函数的周期,进而可得的值,然后逆用五点作图法求出的值即可求解.【详解】解:由图象可知,函数的周期,即,所以,不妨设时,由五点作图法,得,所以,所以故选:B.2、C【解析】由函数的图象的顶点坐标求出A,由周期求出,可判断①,由点的坐标代入求得,可得函数的解析式,再根据函数图象的变换规律可判断②,将代入解析式中验证,可判断③;根据三角函数的图象和性质可判断④,即可得到答案【详解】由函数图象可知:,函数的最小正周期为,故,将代入解析式中:,得:由于,故,故①错误;由以上分析可知,将的图象向右平移1个单位,得到函数的图象,故②正确;将代入得,故③错误;由于函数的最小正周期为8,而,故不会出现一个取到最大或最小值另一个取到最小或最大的情况,故,故④正确,故选:C3、C【解析】分别求两个命题下的集合,再根据集合关系判断选项.【详解】,则,,则,因为,所以是充分必要条件.故选:C4、A【解析】由题设条件得,,利用基本不等式求出最值【详解】由已知,,所以当且仅当时等号成立,又,所以时取最小值故选A【点睛】本题考查据题设条件构造可以利用基本不等式的形式,利用基本不等式求最值5、D【解析】利用同角三角函数关系式可求,再应用和角正切公式即求.【详解】∵,,∴,,∴.故选:D.6、A【解析】求三角函数值不妨作图说明,直截了当.【详解】依题意,作图如下:假设直线的倾斜角为,则角的终边为射线OA,在第四象限,,,,用同角关系:,得;∴;故选:A.7、D【解析】根据三角形函数图像变换和解析式的关系即可求出变换后函数解析式,从而根据余弦函数图像的性质可求其对称轴.【详解】将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),则函数解析式变为;向左平移个单位得,由余弦函数的性质可知,其对称轴一定经过图象的最高点或最低点,故对称轴为:,k∈Z,k=1时,.故选:D.8、C【解析】由已知可得,从而可得函数图象【详解】对于y=x+,当x>0时,y=x+1;当x<0时,y=x-1.即,故其图象应为C.故选:C9、D【解析】根据给定条件求出水费与水价的函数关系,再由给定函数值计算作答.【详解】依题意,设此户居民月用水量为,月缴纳的水费为y元,则,整理得:,当时,,当时,,因此,由得:,解得,所以此户居民本月的用水量为.故选:D10、B【解析】首先已知等式变形为,构造两个函数,,问题可转化为这两个函数的值域之间的包含关系【详解】∵,,∴,又,∴,∴由得,,设,,则,,,∴的值域是值域的子集∵,时,,显然,(否则0属于的值域,但)∴,∴(*)由上讨论知同号,时,(*)式可化为,∴,,当时,(*)式可化为,∴,无解综上:故选:B【点睛】本题考查函数恒成立问题,解题关键是掌握转化与化归思想.首先是分离两个变量,然后构造新函数,问题转化为两个函数值域之间的包含关系.其次通过已知关系确定函数值域的形式(或者参数的一个范围),在这个范围解不等式才能非常简单地求解二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】先求向量的模,根据向量积,即可求夹角.【详解】解:,,所以与的夹角为.故答案为:12、0【解析】可得,再代值求解的值即可【详解】的反函数为,则,则,则.故答案为:013、1【解析】根据函数解析式,从里到外计算即可得解.【详解】,所以.故答案为:114、【解析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【点睛】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题15、【解析】以三角函数定义分别求得的值即可解决.【详解】由角的终边经过点,可知则,,所以故答案为:16、##【解析】根据平面向量的夹角公式即可求出【详解】设与的夹角为,由夹角余弦公式,解得故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由已知利用同角三角函数基本关系式可求,进而利用二倍角的正弦函数公式即可计算得解;(2)由(1)及两角和的余弦函数公式,诱导公式即可计算得解.试题解析:(1)由题意得:,∴.(2)∵,,∴.18、(1)(2)【解析】(1)根据对数函数的真数大于零得到不等式组,解得即可求出函数的定义域;(2)当时得到、即可得到与,则原不等式即为,再根据对数函数的单调性,将函数不等式转化为自变量的不等式,解得即可,需注意函数的定义域;【小问1详解】解:由题意得:,解得,因为,所以,故定义域为【小问2详解】解:因为,所以,所以,,因为,所以,即从而,解得.故不等式的解集为19、(1);(2).【解析】(1)根据三角函数的定义,求三角函数,代入求值;(2)由条件可知,,利用诱导公式,结合三角函数的定义,求函数值.【小问1详解】的横坐标为,.【小问2详解】由题可得,,.20、(1)()(2)存在,【解析】(1)设出动圆圆心坐标,由动圆圆心到切线的距离等于动圆与定圆的圆心距减定圆的半径列式求解动圆圆心的轨迹方程;(2)求出过原点且倾斜角为的直线方程,和曲线C联立后利用根与系数关系得到M,N的横纵坐标的和与积,由,得列式求解m的值,结合m的范围说明不存在以MN为直径的圆过点A试题解析:(1)设动圆圆心为,则,化简得(),这就是动圆圆心的轨迹的方程.(2)直线的方程为,代入曲线的方程得显然.设,,则,,而若以为直径的圆过点,则,∴由此得∴,即.解得(舍去)故存在以为直径的圆过点点睛:本题考查了轨迹方程的求法,考查了直线与圆锥曲线的关系,训练了利用数量积判断两个向量的垂直关系,考查了学生的计算能力.21、(1).(2).【解析】(1)当时,得到函数的解析式,把不等式,转化为,即可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年电动窗膜(隐私遮光调节)项目评估报告
- 2026年摄影服务 旅拍定制套餐项目可行性研究报告
- 2026年智能语音助手系统项目营销方案
- 2026年老年慢病管理项目评估报告
- 2026年智能脚踢感应电动尾门传感器项目公司成立分析报告
- 2026年智能文档扫描仪项目公司成立分析报告
- 黑猫课件教学课件
- 2026年智能助眠仪项目可行性研究报告
- 黑底白字课件设计
- 2026年智能食品安全追溯系统项目营销方案
- 别墅浇筑施工方案(3篇)
- 2026年关于汽车销售工作计划书
- 肿瘤放射治疗的新技术进展
- 2024外研版四年级英语上册Unit 4知识清单
- 视频会议系统施工质量控制方案
- 2025年高二数学建模试题及答案
- 2025年党的二十届四中全会精神宣讲稿及公报解读辅导报告
- 压力管道安装单位压力管道质量安全风险管控清单
- 停车场道闸施工方案范本
- 2025年实验室安全事故案例
- 卫生院关于成立消除艾滋病、梅毒、乙肝母婴传播领导小组及职责分工的通知
评论
0/150
提交评论