版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省徐州市铜山中学2026届数学高一上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.幂函数的图象不过原点,则()A. B.C.或 D.2.的值是()A B.C. D.3.下列函数中,既不是奇函数也不是偶函数的是A. B.C. D.4.已知函数在区间上是增函数,则的取值范围是()A. B.C. D.5.已知奇函数的定义域为,其图象是一条连续不断的曲线.若,则函数在区间内的零点个数至少为()A.1 B.2C.3 D.46.如图所示,△A′B′C′是水平放置的△ABC的直观图,则在△ABC的三边及中线AD中,最长的线段是()A.AB B.ADC.BC D.AC7.已知函数(ω>0),对任意x∈R,都有≤,并且在区间上不单调,则ω的最小值是()A.6 B.7C.8 D.98.直线的倾斜角是()A.30° B.60°C.120° D.150°9.已知函数,的图象如图,若,,且,则()A.0 B.1C. D.10.已知偶函数的定义域为,当时,,若,则的解集为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.—个几何体的三视图如图所示,则该几何体的体积为__________12.设函数的定义域为D,若存在实数,使得对于任意,都有,则称为“T—单调增函数”对于“T—单调增函数”,有以下四个结论:①“T—单调增函数”一定在D上单调递增;②“T—单调增函数”一定是“—单调增函数”(其中,且):③函数是“T—单调增函数”(其中表示不大于x的最大整数);④函数不“T—单调增函数”其中,所有正确的结论序号是______13.已知指数函数(且)在区间上的最大值是最小值的2倍,则______14.将函数的图象向左平移个单位长度后得到的图象,则__________.15.若函数在区间上是增函数,则实数取值范围是______16.的值__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(直角三角形三条边,是直角顶点)来处理污水,管道越长,污水净化效果越好.要求管道的接口是的中点,分别落在线段上(含线段两端点),已知米,米,记.(1)试将污水净化管道的总长度(即的周长)表示为的函数,并求出定义域;(2)问取何值时,污水净化效果最好?并求出此时管道的总长度.18.已知函数,图象上两相邻对称轴之间的距离为;_______________;(Ⅰ)在①的一条对称轴;②的一个对称中心;③的图象经过点这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(Ⅱ)若动直线与和的图象分别交于、两点,求线段长度的最大值及此时的值.注:如果选择多个条件分别解答,按第一个解答计分.19.已知向量,,若存在非零实数,使得,,且,试求:的最小值20.某国际性会议纪念章的一特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向该会议的组织委员会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时,该店一年可销售2000枚,经过市场调研发现,每枚纪念章的销售价格在每枚20元的基础上,每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元(每枚的销售价格应为正整数).(1)写出该特许专营店一年内销售这种纪念章所获得的利润(元)与每枚纪念章的销售价格的函数关系式;(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出这个最大值;21.已知(1)求函数的单调区间;(2)求证:时,成立.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据幂函数的性质求参数.【详解】是幂函数,解得或或幂函数的图象不过原点,即故选:B2、C【解析】由,应用诱导公式求值即可.【详解】.故选:C3、D【解析】根据函数奇偶性的概念,逐项判断即可.【详解】A中,由得,又,所以是偶函数;B中,定义域为R,又,所以是偶函数;C中,定义域为,又,所以是奇函数;D中,定义域为R,且,所以非奇非偶.故选D【点睛】本题主要考查函数的奇偶性,熟记概念即可,属于基础题型.4、A【解析】根据二次函数的单调区间及增减性,可得到,求解即可.【详解】函数,开口向下,对称轴为函数在区间上是增函数,所以,解得,所以实数a的取值范围是.故选:A5、C【解析】根据奇函数的定义域为R可得,由和奇函数的性质可得、,利用零点的存在性定理即可得出结果.【详解】奇函数的定义域为R,其图象为一条连续不断的曲线,得,由得,所以,故函数在之间至少存在一个零点,由奇函数的性质可知函数在之间至少存在一个零点,所以函数在之间至少存在3个零点.故选:C6、D【解析】因为A′B′与y′轴重合,B′C′与x′轴重合,所以AB⊥BC,AB=2A′B′,BC=B′C′.所以在直角△ABC中,AC为斜边,故AB<AD<AC,BC<AC.故选D.7、B【解析】根据,得为函数的最大值,建立方程求出的值,利用函数的单调性进行判断即可【详解】解:对任意,都有,为函数的最大值,则,,得,,在区间,上不单调,,即,即,得,则当时,最小.故选:B.8、C【解析】设直线的倾斜角为,得到,即可求解,得到答案.【详解】设直线的倾斜角为,又由直线,可得直线的斜率为,所以,又由,解得,即直线的倾斜角为,故选:C【点睛】本题主要考查了直线的斜率与倾斜角的关系,以及直线方程的应用,其中解答中熟记直线的斜率和直线的倾斜角的关系是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】根据图象求得函数解析式,再由,,且,得到的图象关于对称求解.【详解】由图象知:,则,,所以,因在函数图象上,所以,则,解得,因为,则,所以,因为,,且,所以的图象关于对称,所以,故选:A10、D【解析】先由条件求出参数,得到在上的单调性,结合和函数为偶函数进行求解即可.【详解】因为为偶函数,所以,解得.在上单调递减,且.因为,所以,解得或.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、30【解析】由三视图可知这是一个下面是长方体,上面是个平躺着的五棱柱构成的组合体长方体的体积为五棱柱的体积是故该几何体的体积为点睛:本题主要考查的知识点是由三视图求面积,体积.本题通过观察三视图这是一个下面是长方体,上面是个平躺着的五棱柱构成的组合体,分别求出长方体和五棱柱的体积,然后相加可得答案12、②③④【解析】①③④选项可以举出反例;②可以进行证明.【详解】①例如,定义域为,存在,对于任意,都有,但在上不单调递增,①错误;②因为是单调增函数,所以存在,使得对于任意,都有,因为,,所以,故,即存在实数,使得对于任意,都有,故是单调增函数,②正确;③,定义域为,当时,对任意的,都有,即成立,所以是单调增函数,③正确;④当时,,若,则,显然不满足,故不是单调增函数,④正确.故答案为:②③④13、或2【解析】先讨论范围确定的单调性,再分别进行求解.【详解】①当时,,得;②当时,,得,故或2故答案为:或2.14、0【解析】根据题意,可知将函数的图象向右平移个单位长度后得到,由函数图象的平移得出的解析式,即可得出的结果.【详解】解:由题意可知,将函数的图象向右平移个单位长度后得到,则,所以.故答案为:0.15、【解析】令,由题设易知在上为增函数,根据二次函数的性质列不等式组求的取值范围.【详解】由题设,令,而为增函数,∴要使在上是增函数,即在上为增函数,∴或,可得或,∴的取值范围是.故答案为:16、1【解析】由,结合辅助角公式可知原式为,结合诱导公式以及二倍角公式可求值.【详解】解:.故答案为:1.【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)或时,L取得最大值为米【解析】(1)解直角三角形求得得EH、FH、EF的解析式,再由L=EH+FH+EF得到污水净化管道的长度L的函数解析式,并注明θ的范围(2)设sinθ+cosθ=t,根据函数L=在[,]上是单调减函数,可求得L的最大值.同时也可求得值【小问1详解】由题意可得,,,由于,,所以,,,即,【小问2详解】设,则,由于,由于在上是单调减函数,当时,即或时,L取得最大值为米18、(Ⅰ)选①或②或③,;(Ⅱ)当或时,线段的长取到最大值.【解析】(Ⅰ)先根据题中信息求出函数的最小正周期,进而得出.选①,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;选②,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;选③,根据题意得出,结合的取值范围可求出的值,进而得出函数的解析式;(Ⅱ)令,利用三角恒等变换思想化简函数的解析式,利用正弦型函数的基本性质求出在上的最大值和最小值,由此可求得线段长度的最大值及此时的值.【详解】(Ⅰ)由于函数图象上两相邻对称轴之间的距离为,则该函数的最小正周期为,,此时.若选①,则函数的一条对称轴,则,得,,当时,,此时,;若选②,则函数的一个对称中心,则,得,,当时,,此时,;若选③,则函数的图象过点,则,得,,,,解得,此时,.综上所述,;(Ⅱ)令,,,,当或时,即当或时,线段的长取到最大值.【点睛】本题考查利用三角函数的基本性质求解析式,同时也考查了余弦型三角函数在区间上最值的计算,考查计算能力,属于中等题.19、【解析】根据向量数量积的坐标公式和性质,分别求出,且,由此将化简整理得到.将此代入,可得关于的二次函数,根据二次函数的单调性即可得到的最小值【详解】解:,,,,且,,且,,即,即,即,将、和代入上式,可得,整理得,因为,为非零实数,所以且,由此可得,当时,的最小值等于20、(1);(2),.【解析】(1)根据题意列函数关系式即可,需注意,当时,由题意不生产纪念章,故;(2)利用配方法分别求解不同条件下的最值,并进行比较即可,需注意每枚的销售价格应为正整数【详解】(1)依题意,得,整理可得(2)由(1)可得,当时,则当时,;当时,则当或时,;因为,则当时,【点睛】本题考查函数关系式在生活中的应用,考查配方法求最值,实际应用中要注意自变量的取值范围21、(1)增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年山东工程职业技术大学单招职业倾向性考试题库及答案1套
- 2026年检察保密知识测试题及参考答案
- 2026年心理咨询师辅导习题带答案
- 2026年湖南省娄底地区单招职业适应性考试题库及答案1套
- 2026年电工上岗考试试题及答案(必刷)
- 2026贵州贵阳观山湖人力资源服务有限公司人员招聘3人笔试模拟试题及答案解析
- 2026年心理有关知识测试题及完整答案1套
- 2025河南南阳市唐河县属国有企业招聘现场审核(第3号)笔试参考题库及答案解析
- 2026中国中煤陕西公司煤化工二期项目招聘54人笔试备考试题及答案解析
- 2025浙江绍兴市职业教育中心(绍兴技师学院)第一学期第六次编外用工招聘1人笔试参考题库及答案解析
- 2026长治日报社工作人员招聘劳务派遣人员5人备考题库及答案1套
- 河道清淤作业安全组织施工方案
- 2026年1月1日起施行的《兵役登记工作规定》学习与解读
- GB/T 46831-2025塑料聚丙烯(PP)等规指数的测定低分辨率核磁共振波谱法
- 2021海湾消防 GST-LD-8318 紧急启停按钮使用说明书
- 2025年国家开放大学《公共经济学》期末考试备考试题及答案解析
- 2025年河北省职业院校技能大赛高职组(商务数据分析赛项)参考试题库(含答案)
- GB/T 33725-2017表壳体及其附件耐磨损、划伤和冲击试验
- FZ/T 01057.1-2007纺织纤维鉴别试验方法 第1部分:通用说明
- 实习协议模板(最新版)
- 不同GMP法规间的区别
评论
0/150
提交评论