四川省成都外国语2026届数学高二上期末检测模拟试题含解析_第1页
四川省成都外国语2026届数学高二上期末检测模拟试题含解析_第2页
四川省成都外国语2026届数学高二上期末检测模拟试题含解析_第3页
四川省成都外国语2026届数学高二上期末检测模拟试题含解析_第4页
四川省成都外国语2026届数学高二上期末检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都外国语2026届数学高二上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.空间直角坐标系中,已知则点关于平面的对称点的坐标为()A. B.C. D.2.圆与圆公切线的条数为()A.1 B.2C.3 D.43.如图,在长方体中,,,则直线和夹角余弦值为()A. B.C. D.4.已知、,则直线的倾斜角为()A. B.C. D.5.已知双曲线,过点作直线l,若l与该双曲线只有一个公共点,这样的直线条数为()A.1 B.2C.3 D.46.若x,y满足约束条件,则的最大值为()A.1 B.0C.−1 D.−37.直线与直线交于点Q,m是实数,O为坐标原点,则的最大值是()A.2 B.C. D.48.从1,2,3,4,5中随机抽取三个数,则这三个数能成为一个三角形三边长的概率为()A. B.C. D.9.已知等差数列中,、是的两根,则()A B.C. D.10.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的中心为原点,焦点,均在y轴上,椭圆C的面积为,且短轴长为,则椭圆C的标准方程为()A. B.C. D.11.中秋节吃月饼是我国的传统习俗,若一盘中共有两种月饼,其中5块五仁月饼、6块枣泥月饼,现从盘中任取3块,在取到的都是同种月饼的条件下,都是五仁月饼的概率是()A B.C. D.12.设命题甲:,命题乙:直线与直线平行,则()A.甲是乙的充分不必要条件 B.甲是乙的必要不充分条件C.甲是乙的充要条件 D.甲是乙的既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的准线方程为,在抛物线C上存在A、B两点关于直线对称,设弦AB的中点为M,O为坐标原点,则的值为___________.14.已知抛物线:,斜率为且过点的直线与交于,两点,且,其中为坐标原点(1)求抛物线的方程;(2)设点,记直线,的斜率分别为,,证明:为定值15.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则_________.16.已知数列满足:,,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,圆(1)若过点的直线与圆相切,求直线的方程;(2)若直线与圆相交于A,两点,弦的长为,求的值18.(12分)设数列的前项和,且成等差数列.(1)求数列的通项公式;(2)记数列前项和,求使成立的的最小值19.(12分)已知椭圆:,的左右焦点,是双曲线的左右顶点,的离心率为,的离心率为,点在上,过点E和,分别作直线交椭圆于,和,点,如图.(1)求,的方程;(2)求证:直线和的斜率之积为定值;(3)求证:为定值.20.(12分)已知曲线上任意一点满足方程,(1)求曲线的方程;(2)若直线与曲线在轴左、右两侧的交点分别是,且,求的最小值.21.(12分)已知抛物线C:,直线l经过点,且与抛物线C交于M,N两点,其中.(1)若,且,求点M的坐标;(2)是否存在正数m,使得以MN为直径的圆经过坐标原点O,若存在,请求出正数m,若不存在,请说明理由.22.(10分)红铃虫是棉花的主要害虫之一,也侵害木棉、锦葵等植物.为了防治虫害,从根源上抑制害虫数量.现研究红铃虫的产卵数和温度的关系,收集到7组温度和产卵数的观测数据于表Ⅰ中.根据绘制的散点图决定从回归模型①与回归模型②中选择一个来进行拟合表Ⅰ温度x/℃20222527293135产卵数y/个711212465114325(1)请借助表Ⅱ中的数据,求出回归模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)类似的,可以得到回归模型②的方程为,试求两种模型下温度为时的残差;(3)若求得回归模型①的相关指数,回归模型②的相关指数,请结合(2)说明哪个模型的拟合效果更好参考数据:.附:回归方程中,相关指数.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据空间直角坐标系的对称性可得答案.【详解】根据空间直角坐标系的对称性可得关于平面的对称点的坐标为,故选:D.2、D【解析】分别求出圆和圆的圆心和半径,判断出两圆的位置关系可得到公切线的条数.【详解】根据题意,圆即,其圆心为,半径;圆即,其圆心为,半径;两圆的圆心距,所以两圆相离,其公切线条数有4条;故选:D.3、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.4、B【解析】设直线的倾斜角为,利用直线的斜率公式求出直线的斜率,进而可得出直线的倾斜角.【详解】设直线的倾斜角为,由斜率公式可得,,因此,.故选:B.5、D【解析】先确定双曲线的右顶点,再分垂直轴、与轴不垂直两种情况讨论,当与轴不垂直时,可设直线方程为,联立直线与抛物线方程,消元整理,再分、两种情况讨论,即可得解【详解】解:根据双曲线方程可知右顶点为,使与有且只有一个公共点情况为:①当垂直轴时,此时过点的直线方程为,与双曲线只有一个公共点,②当与轴不垂直时,可设直线方程为联立方程可得当即时,方程只有一个根,此时直线与双曲线只有一个公共点,当时,,整理可得即故选:D6、B【解析】先画出可行域,由,得,作出直线,过点时,取得最大值,求出点的坐标代入目标函数中可得答案【详解】不等式组表示的可行域如图所示,由,得,作出直线,过点时,取得最大值,由,得,即,所以的最大值为,故选:B7、B【解析】求出两直线的交点坐标,结合两点间的距离公式得到,进而可以求出结果.【详解】因为与的交点坐标为所以,当时,,所以的最大值是,故选:B.8、C【解析】列举出所有情况,然后根据两边之和大于第三边数出能构成三角形的情况,进而得到答案.【详解】5个数取3个数的所有情况如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10种情况,而能构成三角形的情况有{2,3,4;2,4,5;3,4,5}共3种情况,故所求概率.故选:C.9、B【解析】利用韦达定理结合等差中项的性质可求得的值,再结合等差中项的性质可求得结果.【详解】对于方程,,由韦达定理可得,故,则,所以,.故选:B.10、C【解析】设出椭圆的标准方程,根据已知条件,求得,即可求得结果.【详解】因为椭圆的焦点在轴上,故可设其方程为,根据题意可得,,故可得,故所求椭圆方程为:.故选:C.11、C【解析】分别求出取到3块月饼都是同种月饼和取到3块月饼都是五仁月饼的种数,再根据概率公式即可得解.【详解】解:由题意可得,取到3块月饼都是同种月饼有种情况,取到3块月饼都是五仁月饼有种情况,所以在取到的都是同种月饼的条件下,都是五仁月饼的概率是.故选:C.12、A【解析】根据充分条件和必要条件的定义,结合两直线平行的性质进行求解即可.【详解】当时,直线的方程为,直线方程为,此时,直线与直线平行,即甲乙;直线和直线平行,则,解得或,即乙甲;则甲是乙的充分不必要条件.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】先运用点差法得到,然后通过两点距离公式求出结果详解】解:抛物线的准线方程为,所以,解得,所以抛物线的方程为,设点,,,,的中点为,,则,,两式相减得,即,又因为,两点关于直线对称,所以,解得,可得,则,故答案为:514、(1)(2)为定值6【解析】(1)由题意可知:将直线方程代入抛物线方程,由韦达定理可知:,,,,求得p的值,即可求得抛物线E的方程;(2)由直线的斜率公式可知:,,,代入,,即可得到:.试题解析:(1)直线的方程为,联立方程组得,设,,所以,,又,所以,从而抛物线的方程为(2)因为,,所以,,因此,又,,所以,即为定值点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.15、【解析】设M,N的中点坐标为P,,则;由于,化简可得,根据椭圆的定义==6,所以12.考点:1.椭圆的定义;2.两点距离公式.16、【解析】令n=n-1代回原式,相减可得,利用累乘法,即可得答案.【详解】因为,所以,两式相减可得,整理得,所以,整理得,又,解得.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)【解析】(1)分直线斜率存在和不存在两种情况分析,当当过点的直线存在斜率时,设方程为,利用圆心到直线的距离等于半径求得k,即可得出答案;(2)求出圆心到直线的距离,再根据圆的弦长公式即可得出答案.【详解】解:(1)由题意知圆心的坐标为,半径,当过点的直线斜率不存在时,方程为,由圆心到直线的距离知,直线与圆相切,当过点的直线存在斜率时,设方程为,即由题意知,解得,直线的方程为故过点的圆的切线方程为或(2)圆心到直线的距离为,,解得18、(1).(2)10.【解析】(1)借助于将转化为,进而得到数列为等比数列,通过首项和公比求得通项公式;(2)整理数列的通项公式,可知数列为等比数列,求得前n项和,代入不等式可求得n的最小值试题解析:(1)由已知,有,即从而又因为成等差数列,即所以,解得所以,数列是首项为2,公比为2的等比数列故(2)由(1)得.所以由,得,即因为,所以.于是,使成立的n的最小值为10考点:1.数列通项公式;2.等比数列求和19、(1):;:(2)证明见解析(3)证明见解析【解析】(1)利用待定系数法,根据条件先求曲线的方程,再求曲线的方程;(2)首先设,表示直线和的斜率之积,即可求解定值;(3)首先表示直线与方程联立消,利用韦达定理表示弦长,以及利用直线和的斜率关系,表示弦长,并证明为定值.【小问1详解】由题设知,椭圆离心率为解得∴,∵椭圆的左右焦点,是双曲线的左右顶点,∴设双曲线:∴的离心率为解得.∴::;【小问2详解】证明:∵点在上∴设则,∴.∴直线和的斜率之积为定值1;【小问3详解】证明:设直线和的斜率分别为,,则设,:与方程联立消得“*”则,是“*”的二根则则同理∴.20、(1)(2)8【解析】(1)根据双曲线的定义即可得出答案;(2)可设直线的方程为,则直线的方程为,由,求得,同理求得,从而可求得的值,再结合基本不等式即可得出答案.【小问1详解】解:设,则,等价于,曲线为以为焦点的双曲线,且实轴长为2,焦距为,故曲线的方程为:;【小问2详解】解:由题意可得直线的斜率存在且不为0,可设直线的方程为,则直线的方程为,由,得,所以,同理可得,,所以,,当且仅当时取等号,所以当时,取得最小值8.21、(1)或(2)存在,【解析】(1)确定点为抛物线的焦点,则根据抛物线的焦半径公式,结合抛物线方程,求得答案;(2)假设存在正数m,使得以MN为直径的圆经过坐标原点O,可推得,由此可设直线方程,联立抛物线方程,利用根与系数的关系,代入到中,可得结论.【小问1详解】依题意得为的焦点,故,解得,故,则∴点的坐标或;【小问2详解】假设存在正数,使得以为直径的圆经过坐标原点,∴,设直线:,,,由,得,则,,∵,,∴,解得或(舍去)所以存在正数,使得以为直径的圆经过坐标原点.22、(1)(或)(2)模型①:1.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论