版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市一中2026届高二数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆方程为,点在椭圆上,右焦点为F,过原点的直线与椭圆交于A,B两点,若,则椭圆的方程为()A. B.C. D.2.若用面积为48的矩形ABCD截某圆锥得到一个椭圆,且该椭圆与矩形ABCD的四边都相切.设椭圆的方程为,则下列满足题意的方程为()A. B.C. D.3.已知等差数列的前项和为,,,当取最大时的值为()A. B.C. D.4.数列是等比数列,是其前n项之积,若,则的值是()A.1024 B.256C.2 D.5125.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A. B.C. D.6.已知为偶函数,且当时,,其中为的导数,则不等式的解集为()A. B.C. D.7.【2018江西抚州市高三八校联考】已知双曲线(,)与抛物线有相同的焦点,且双曲线的一条渐近线与抛物线的准线交于点,则双曲线的离心率为()A. B.C. D.8.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球9.如图,过拋物线的焦点的直线与拋物线交于两点,与其准线交于点(点位于之间)且于点且,则等于()A. B.C. D.10.三等分角是“古希腊三大几何问题”之一,数学家帕普斯巧妙地利用圆弧和双曲线解决了这个问题.如图,在圆D中,为其一条弦,,C,O是弦的两个三等分点,以A为左焦点,B,C为顶点作双曲线T.设双曲线T与弧的交点为E,则.若T的方程为,则圆D的半径为()A. B.1C.2 D.11.是首项和公差均为3的等差数列,如果,则n等于()A.671 B.672C.673 D.67412.公元前6世纪,古希腊的毕达哥拉斯学派研究发现了黄金分割,简称黄金数.离心率等于黄金数的倒数的双曲线称为黄金双曲线.若双曲线是黄金双曲线,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点F恰好是椭圆的右焦点,且两条曲线交点的连线过点F,则该椭圆的离心率为____________14.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.15.某公司青年、中年、老年员工的人数之比为10∶8∶7,从中抽取100名作为样本,若每人被抽中的概率是0.2,则该公司青年员工的人数为__________16.已知函数有零点,则的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲、乙等6个班级参加学校组织广播操比赛,若采用抽签的方式随机确定各班级的出场顺序(序号为1,2,…,6),求:(1)甲、乙两班级的出场序号中至少有一个为奇数的概率;(2)甲、乙两班级之间的演出班级(不含甲乙)个数X的分布列与期望18.(12分)已知数列满足(1)求;(2)若,且数列的前n项和为,求证:19.(12分)已知圆,直线(1)求证:对,直线l与圆C总有两个不同交点;(2)当时,求直线l被圆C截得的弦长20.(12分)已知p:关于x的方程至多有一个实数解,.(1)若命题p为真命题,求实数a的取值范围;(2)若p是q的充分不必要条件,求实数m的取值范围.21.(12分)已知命题p:,命题q:.(1)若命题p为真命题,求实数x的取值范围.(2)若p是q的充分条件,求实数m的取值范围;22.(10分)已知圆C过点,,它与x轴的交点为,,与y轴的交点为,,且.(1)求圆C的标准方程;(2)若,直线,从点A发出的一条光线经直线l反射后与圆C有交点,求反射光线所在的直线的斜率的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据椭圆的性质可得,则椭圆方程可求.【详解】由点在椭圆上得,由椭圆的对称性可得,则,故椭圆方程为.故选:A.2、A【解析】由椭圆与矩形ABCD的四边都相切得到再逐项判断即可.【详解】由于椭圆与矩形ABCD的四边都相切,所以矩形两边长分别为,由矩形面积为48,得,对于选项B,D由于,不符合条件,不正确.对于选项A,,满足题意.对于选项C,不正确.故选:A.3、B【解析】由已知条件及等差数列通项公式、前n项和公式求基本量,再根据等差数列前n项和的函数性质判断取最大时的值.【详解】令公差为,则,解得,所以,当时,取最大值.故选:B4、D【解析】设数列的公比为q,由已知建立方程求得q,再利用等比数列的通项公式可求得答案.【详解】解:因为数列是等比数列,是其前n项之积,,设数列的公比为q,所以,解得,所以,故选:D.5、B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B6、A【解析】根据已知不等式和要求解的不等式特征,构造函数,将问题转化为解不等式.通过已知条件研究g(x)的奇偶性和单调性即可解该不等式.【详解】令,则根据题意可知,,∴g(x)是奇函数,∵,∴当时,,单调递减,∵g(x)是奇函数,g(0)=0,∴g(x)在R上单调递减,由不等式得,.故选:A.7、C【解析】由题意可知,抛物线的焦点坐标为,准线方程为,由在抛物线的准线上,则,则,则焦点坐标为,所以,则,解得,双曲线的渐近线方程是,将代入渐近线的方程,即,则双曲线的离心率为,故选C.8、D【解析】利用互斥事件、对立事件的定义逐一判断即可.【详解】A答案中的两个事件可以同时发生,不是互斥事件B答案中的两个事件可以同时发生,不是互斥事件C答案中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件D答案中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件故选:D【点睛】本题考查的是互斥事件和对立事件的概念,较简单.9、B【解析】由题可得,然后结合条件可得,即求.【详解】设于点,准线交轴于点G,则,又,∴,又于点且,∴BE∥AD,∴,即,∴,∴等于.故选:B.10、C【解析】由题设写出双曲线的方程,对比系数,求出即可获解【详解】由题知所以双曲线的方程为又由题设的方程为,所以,即设AB的中点为,则由.所以,即圆的半径为2故选:C11、D【解析】根据题意,求得数列的通项公式,代入数据,即可得答案.【详解】因为数列为等差数列,所以,令,解得.故选:D12、A【解析】根据黄金双曲线的定义直接列方程求解【详解】双曲线中的,所以离心率,因为双曲线是黄金双曲线,所以,两边平方得,解得或(舍去),故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设两条曲线交点为根据椭圆和抛物线对称性知,不妨点A在第一象限,由A在抛物线上得,A在椭圆上得.则由条件得:.解得(舍去)14、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:15、200【解析】先根据分层抽样的方法计算出该单位青年职工应抽取的人数,进而算出青年职工的总人数.【详解】由题意,从中抽取100名员工作为样本,需要从该单位青年职工中抽取(人).因为每人被抽中的概率是0.2,所以青年职工共有(人).故答案:200.16、【解析】利用导数可求得函数的最小值,要使函数有零点,只要,求得函数的最小值,即可得解.【详解】解:,当时,,当时,,所以在上递减,在上递增,所以,因为函数有零点,所以,解得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)X01234p期望为.【解析】(1)求出甲、乙两班级的出场序号中均为偶数的概率,进而求出答案;(2)求出X的可能取值及相应的概率,写出分布列,求出期望值.【小问1详解】由题意得:甲、乙两班级的出场序号中均为偶数的概率为,故甲、乙两班级的出场序号中至少有一个为奇数的概率;【小问2详解】X的可能取值为0,1,2,3,4,,,,故分布列为:X01234p数学期望为18、(1)(2)证明见解析【解析】(1)先求得,猜想,然后利用数学归纳法进行证明.(2)利用放缩法证得结论成立.【小问1详解】依题意,,,,猜想,下面用数学归纳法进行证明:当时,结论成立,假设当时结论成立,即,由,,所以当时,有,结论成立,所以当时,.【小问2详解】由(1)得,且为单调递增数列,所以.所以.19、(1)证明见解析;(2).【解析】(1)由直线过定点,只需判断定点在圆内部,即可证结论.(2)由点线距离公式求弦心距,再利用半径、弦心距、弦长的几何关系求弦长即可.【小问1详解】直线恒过定点,又,所以点在圆的内部,所以直线与圆总有两个不同的交点,得证.【小问2详解】由题设,,又的圆心为,半径为,所以到直线的距离,所以所求弦长为20、(1)(2)【解析】(1)根据命题p为真命题,可得,解之即可得解;(2)若p是q的充分不必要条件,则,列出不等式组,解之即可得出答案.【小问1详解】解:命题p:关于x的方程至多有一个实数解,∴,解得,∴实数a的取值范围是;【小问2详解】解:命题,∵p是q的充分不必要条件,∴,∴,且两式等号不能同时取得,解得,∴实数m的取值范围是.21、(1);(2).【解析】(1)由一元二次不等式的解法求得的范围;(2)由p是q的充分条件,转化为集合的包含关系,从而可求实数m的取值范围.【详解】(1)由p:为真,解得.(2)q:,若p是q的充分条件,则是的子集所以.即.22、(1);(2).【解析】(1)设圆C的一般式方程为:,然后根据题意列出方程,解出D,E,F的值即可得到圆的方程;(2)先求出点关于直线l的对称点,设反射光线所在直线方程为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东广州市花都区华侨初级中学招聘1人备考题库附答案
- 2025广东惠州市市直医疗单位招聘高层次和急需紧缺人才直接业务考核笔试备考题库附答案
- 2025年寻乌县第三人民医院招聘卫生专业技术人员(劳动合同制)7人参考题库附答案
- 2025广东佛山市高明区明城镇社区卫生服务中心招聘合同制工作人员1人(公共基础知识)综合能力测试题附答案
- 2025年齐齐哈尔龙江县选调县直学校教师22人备考题库附答案
- 2025广东深圳大学师范学院附属中学急聘初中语文教师1人考试参考题库附答案
- 2025山东烟台市市级机关公开遴选公务员42人备考题库附答案
- 2026年阿拉善职业技术学院高职单招职业适应性测试备考题库带答案解析
- (能力提升)2025-2026学年下学期人教统编版小学语文六年级第三单元练习卷
- 2026年天津市北辰医院公开招聘事业编高层次人才1人笔试参考题库及答案解析
- 2026秋招:澳森特钢集团试题及答案
- 哲学史重要名词解析大全
- 2026年宁夏黄河农村商业银行科技人员社会招聘备考题库及答案详解(易错题)
- DB37-T4975-2025分布式光伏直采直控技术规范
- 脱硫废水零排放项目施工方案
- 2026年海南卫生健康职业学院单招综合素质考试题库参考答案详解
- 急性心梗合并急性心衰护理
- 肺原位腺癌病理课件讲解
- 传承三线精神、砥砺奋进前行课件
- 消防设施维保服务方案投标文件(技术方案)
- 堵漏施工方案报价
评论
0/150
提交评论