版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届吉林省吉林市吉林地区普通高中友好学校联合体第三十一届高二上数学期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则“”是“直线与直线平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B.C. D.3.函数在区间(0,e)上的极小值为()A.-e B.1-eC.-1 D.14.圆与圆的位置关系是()A.内切 B.相交C.外切 D.相离5.已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为A.+=1 B.+=1C.+=1 D.+=16.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3C.6 D.97.在等比数列中,若是函数的极值点,则的值是()A. B.C. D.8.已知等比数列的各项均为正数,且,则()A. B.C. D.9.已知双曲线满足,且与椭圆有公共焦点,则双曲线的方程为()A. B.C. D.10.已知向量,若,则()A. B.5C.4 D.11.某班对期中成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,……,60进行编号,然后从随机数表第9行第5列的数1开始向右读,则选出的第6个个体是()(注:如下为随机数表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.5212.设为数列的前n项和,,且满足,若,则()A.2 B.3C.4 D.5二、填空题:本题共4小题,每小题5分,共20分。13.美好人生路车站早上有6:40,6:50两班开往A校的公交车,若李华同学在早上6:35至6:50之间随机到达该车站,乘开往A校的公交车,公交车准时发车,则他等车时间不超过5分钟的概率为______14.已知内角A,B,C的对边为a,b,c,已知,且,则c的最小值为__________.15.已知平行四边形内接于椭圆,且的斜率之积为,则椭圆的离心率为________16.抛物线的焦点为F,准线为l,C上的一点M在l上的射影为N,已知线段FN的垂直平分线方程为,则___________;___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆C:的离心率为,,是椭圆的左、右焦点,过且垂直于x轴的直线被椭圆C截得的线段长为1(1)求椭圆C的方程;(2)过点的直线l与椭圆C交于A,B两点,求(O为坐标原点)的面积的最大值18.(12分)已知O为坐标原点,双曲线C:(,)的离心率为,点P在双曲线C上,点,分别为双曲线C的左右焦点,.(1)求双曲线C的标准方程;(2)已知点,,设直线PA,PB的斜率分别为,.证明:为定值.19.(12分)已知函数(1)求曲线在点(e,)的切线方程;(2)求函数的单调区间.20.(12分)已知数列的前n项和为,,且(1)求数列的通项公式;(2)令,记数列的前n项和为,求证:21.(12分)已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2的周长为6,离心率等于.(1)求椭圆C的标准方程;(2)过点(4,0)的直线l交椭圆C于M、N两点,且OM⊥ON,求直线l的方程.22.(10分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)设数列的前项和为,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据两直线平行的充要条件求出a的值,然后可判断.【详解】当时,,所以两直线平行;若两直线平行,则且,解得或,所以,“”是“直线与直线平行”的充分不必要条件.故选:A2、B【解析】分析:由双曲线性质得到,然后在和在中利用余弦定理可得详解:由题可知在中,在中,故选B.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题3、D【解析】求导判断函数的单调性即可求解【详解】的定义域为(0,+∞),,令,得x=1,当x∈(0,1)时,,单调递减,当x∈(1,e)时,,单调递增,故在x=1处取得极小值.故选:D.4、B【解析】判断圆心距与两圆半径之和、之差关系即可判断两圆位置关系.【详解】由得圆心坐标为,半径,由得圆心坐标为,半径,∴,,∴,即两圆相交.故选:B.5、D【解析】设、,所以,运用点差法,所以直线的斜率为,设直线方程为,联立直线与椭圆的方程,所以;又因为,解得.【考点定位】本题考查直线与圆锥曲线的关系,考查学生的化归与转化能力.6、C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.7、B【解析】根据导数的性质求出函数的极值点,再根据等比数列的性质进行求解即可.【详解】,当时,单调递增,当时,单调递减,当时,单调递增,所以是函数的极值点,因为,且所以,故选:B8、B【解析】利用对数的运算性质,结合等比数列的性质可求得结果.【详解】是各项均为正数的等比数列,,,,.故选:B9、A【解析】根据椭圆的标准方程求出,利用双曲线,结合建立方程求出,,即可求出双曲线的渐近线方程【详解】椭圆的标准方程为,椭圆中的,双曲线的焦点与椭圆的焦点相同,双曲线中,双曲线满足,即又在双曲线中,即,解得:,所以双曲线的方程为,故选:A【点睛】关键点点睛:本题主要考查双曲线方程的求解,根据椭圆和双曲线的关系建立方程求出,,是解决本题的关键,考查学生的计算能力,属于基础题10、B【解析】根据向量垂直列方程,化简求得.【详解】由于,所以.故选:B11、D【解析】从指定位置起依次读两位数码,超出编号的数删除.【详解】根据题意,从随机数表第9行第5列的数1开始向右读,依次选出的号码数是:12,34,29,56,07,52;所以第6个个体是52.故选:D.12、B【解析】由已知条件可得数列为首项为2,公差为2的等差数列,然后根据结合等差数列的求和公式可求得答案【详解】在等式中,令,可得,所以数列为首项为2,公差为2的等差数列,因为,所以,化简得,,解得或(舍去),故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,李华等车不超过5分钟,则他必须在6:35-6:40或者6:45-6:50到达,进而根据几何概型求概率的方法求得答案.【详解】由题意,李华等车不超过5分钟,则他必须在6:35-6:40或者6:45-6:50到达,则所求概率.故答案为:.14、【解析】先利用正弦定理边化角式子,得到,再利用正弦定理求出,根据与的关系,求得,即可求得c的最小值.【详解】,即,又,当最大时,即,最小,且为由正弦定理得:,当时,c的最小值为故答案为:【点睛】方法点睛:在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)同时出现两个自由角(或三个自由角)时,要用到.15、##0.5【解析】根据对称性设,,,根据得到,再求离心率即可.【详解】由对称性,,关于原点对称,设,,,,故.故答案为:16、①.2②.4【解析】设点,根据给定条件结合抛物线定义可得线段FN的中点及点M都在线段FN的垂直平分线,再列式计算作答.【详解】抛物线的焦点,准线l:,设点,则,线段FN的中点,由抛物线定义知:,即点M在线段FN的垂直平分线,因此,,解得,而,则有,,所以,.故答案为:2;4【点睛】结论点睛:抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)1.【解析】(1)根据给定条件结合列式计算得解.(2)设出直线l的方程,与椭圆C的方程联立,借助韦达定理结合均值不等式计算作答.【小问1详解】椭圆C的半焦距为c,离心率,因过且垂直于x轴的直线被椭圆C截得的弦长为1,将代入椭圆C方程得:,即,则有,解得,所以椭圆C的方程为.【小问2详解】由(1)知,,依题意,直线l的斜率不为0,则设直线l的方程为,,,由消去x并整理得:,,,的面积,,设,,,,当且仅当,时取得“=”,于是得,,所以面积的最大值为1.【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题18、(1)(2)证明见解析【解析】(1)根据题意和双曲线的定义求出,结合离心率求出b,即可得出双曲线的标准方程;(2)设,根据两点的坐标即可求出、,化简计算即可.【小问1详解】由题知:由双曲线的定义知:,又因为,所以,所以所以,双曲线C的标准方程为小问2详解】设,则因为,,所以,所以19、(1);(2)在单调递减,在单调递增【解析】(1)求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程;(2)利用导函数的符号,判断函数的单调性,求解函数的单调区间即可【详解】解:(1)由得,所以切线斜率为切点坐标为,所以切线方程为,即;(2),令,得当时,;当时,,∴在单调递减,在单调递增20、(1)(2)证明见解析【解析】(1)依题意可得,即可得到是以为首项,为公比的等比数列,从而求出数列的通项公式;(2)由(1)可得,利用错位相减法求和,即可证明;【小问1详解】解:因为,,所以,所以是以为首项,为公比的等比数列,所以,所以;【小问2详解】解:由(1)可知,所以①,所以②;①②得所以;21、(1);(2)或.【解析】(1)由条件得,再结合,可求得椭圆方程;(2)由题意设直线l:x=my+4,设M(x1,y1),N(x2,y2),直线方程与椭圆方程联立方程组,消去,整理后利用根与系的关系可得,,再由OM⊥ON,可得x1x2+y1y2=0,从而可列出关于的方程,进而可求出的值,即可得到直线的方程【详解】(1)由条件知,解得,则故椭圆的方程为(2)显然直线l的斜率存在,且斜率不为0,设直线l:x=my+4交椭圆C于M(x1,y1),N(x2,y2),由,当=(24m)2-4(3m2+4)×36>0时,有,,由条件OM⊥ON可得,,即x1x2+y1y2=0,从而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且满足>0从而直线l方程为或22、(1);(2)证明见解析.【解析】(1)根据等差数列的性质及题干条件,可求得,代入公式,即可求得数列的通项公式;(2)由(1)可得,利用裂项相消求和法,即可求得,即可得证.【详解】解:(1)设数列的公差为,在中,令,得,即,故①.由得,所以②.由①②解得,.所以数列的通项公式为:.(2)由(1)可得,所以,故,所以.因为,所以.【点睛】数列求和的常见方法:(1)倒序相加法:如果一个数列的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃省白银有色集团股份有限公司技能操作人员社会招聘笔试备考试题附答案
- 2025年湖南长沙市司法局招聘10名普通雇员备考题库附答案
- 2025河北承德县人力资源和社会保障局招聘公益性岗位人员(公共基础知识)综合能力测试题附答案
- 2025广东南粤银行云浮分行招聘备考题库附答案
- 2025年甘肃省武威市凉州区高坝镇人民政府招聘专业化管理大学生村文书备考题库附答案
- 2025年广西梧州市苍梧县城建投资发展集团有限公司及子公司第考前自测高频考点模拟试题附答案
- 2025江西九江富和建设投资集团有限公司招聘纪检专干考察、体检笔试模拟试题及答案解析
- 2026年湖南体育职业学院高职单招职业适应性测试备考试题有答案解析
- 2026年毕节职业技术学院单招综合素质笔试模拟试题带答案解析
- 2026福建海峡企业管理服务有限公司联通外包项目实习生招聘笔试备考试题及答案解析
- 中国马克思主义与当代2024版教材课后思考题答案
- 2026年日历表(每月一页、可编辑、可备注)
- 2023-2024学年四川省自贡市小学语文五年级期末高分测试题详细参考答案解析
- 电力工程课程设计-某机床厂变电所设计
- Unit 2 Reading and Thinking教学课件(英语选择性必修第一册人教版)
- 儿童常用补液
- 期货基础知识(期货入门)
- GB/T 22085.2-2008电子束及激光焊接接头缺欠质量分级指南第2部分:铝及铝合金
- GB/T 10454-2000集装袋
- 全球山药产业发展现状分析
- 工业管道施工与验收规范
评论
0/150
提交评论