版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区平煤高级中学、元宝山一中2026届数学高一上期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最小正周期为,若其图象向左平移个单位后得到的函数为奇函数,则函数的图象()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称2.已知,,,则大小关系为()A. B.C. D.3.长方体中的8个顶点都在同一球面上,,,,则该球的表面积为()A. B.C. D.4.的定义域为()A. B.C. D.5.若是第二象限角,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限6.如果两个函数的图象经过平移后能够重合,则称这两个函数为“互为生成”函数,给出下列函数:;;;,其中“互为生成”函数的是A. B.C. D.7.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x3 B.y=|x|+1C.y=-x2+1 D.8.已知集合,,有以下结论:①;②;③.其中错误的是()A.①③ B.②③C.①② D.①②③9.已知在上的减函数,则实数的取值范围是()A. B.C. D.10.若则函数的图象必不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最大值为().12.已知关于的不等式的解集为,其中,则的最小值是___________.13.已知函数是定义在上的奇函数,且当时,,则的值为__________14.若函数(,且)的图象经过点,则___________.15.已知,,则的最大值为______;若,,且,则______.16.函数的图象一定过定点,则点的坐标是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,是平面四边形的对角线,,,且.现在沿所在的直线把折起来,使平面平面,如图.(1)求证:平面;(2)求点到平面的距离.18.已知函数是奇函数(1)求a的值,并根据定义证明函数在上单调递增;(2)求的值域19.求值:(1);(2).20.已知函数的图象经过点(1)求的解析式;(2)若不等式对恒成立,求m的取值范围21.已知函数.(1)求的定义域;(2)若函数,且对任意的,,恒成立,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】求得,求出变换后的函数解析式,根据已知条件求出的值,然后利用代入检验法可判断各选项的正误.【详解】由题意可得,则,将函数的图象向左平移个单位后,得到函数的图象,由于函数为奇函数,则,所以,,,则,故,因为,,故函数的图象关于直线对称.故选:C.2、B【解析】分别判断与0,1等的大小关系判断即可.【详解】因为.故.又,故.又,故.所以.故选:B【点睛】本题主要考查了根据指对幂函数的单调性判断函数值大小的问题,属于基础题.3、B【解析】根据题意,求得长方体的体对角线,即为该球的直径,再用球的表面积公式即可求得结果.【详解】由已知,该球是长方体的外接球,故,所以长方体的外接球半径,故外接球的表面积为.故选:.【点睛】本题考查长方体的外接球问题,涉及球表面积公式的使用,属综合基础题.4、C【解析】由对数函数的性质及分式的性质解不等式即可得解.【详解】由题意得,解得,所以的定义域为.故选:C.【点睛】本题考查了具体函数定义域的求解,属于基础题.5、D【解析】先分析得到,即得点所在的象限.【详解】因为是第二象限角,所以,所以点在第四象限,故选D【点睛】本题主要考查三角函数的象限符合,意在考查学生对该知识的理解掌握水平,属于基础题.6、D【解析】根据“互为生成”函数的定义,利用三角恒等变换化简函数的解析式,再结合函数的图象变换规律,得出结论【详解】∵;;;,故把中的函数的图象向右平移后再向下平移1个单位,可得中的函数图象,故为“互为生成”函数,故选D【点睛】本题主要主要考查新定义,三角恒等变换,函数的图象变换规律,属于中档题7、B【解析】根据基本初等函数的单调性奇偶性,逐一分析答案四个函数在(0,+∞)上的单调性和奇偶性,逐一比照后可得答案【详解】选项A,函数y=x3不是偶函数;故A不满足.选项B,对于函数y=|x|+1,f(-x)=|-x|+1=|x|+1=f(x),所以y=|x|+1是偶函数,当x>0时,y=x+1,所以在(0,+∞)上单调递增;故B满足.选项C,y=-x2+1在(0,+∞)上单调递减;故C不满足选项D,不是偶函数.故D不满足故选:B.【点睛】本题主要考查了函数的奇偶性和单调性的判断,属于基础题.8、C【解析】解出不等式,得到集合,然后逐一判断即可.【详解】由可得所以,故①错;,②错;,③对,故选:C9、B【解析】令,,()若,则函数,减函数,由题设知为增函数,需,故此时无解()若,则函数是增函数,则为减函数,需且,可解得综上可得实数的取值范围是故选点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.10、B【解析】令,则的图像如图所示,不经过第二象限,故选B.考点:1、指数函数图像;2、特例法解题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.12、【解析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:13、-1【解析】因为为奇函数,故,故填.14、【解析】把点的坐标代入函数的解析式,即可求出的值.【详解】因为函数的图象经过点,所以,解得.故答案为:.15、①.14②.10【解析】根据数量积的运算性质,计算的平方即可求出最大值,两边平方,可得,计算的平方即可求解.【详解】,当且仅当同向时等号成立,所以,即的最大值为14,由两边平方可得:,所以,所以,即.故答案为:14;10【点睛】本题主要考查了数量积的运算性质,数量积的定义,考查了运算能力,属于中档题.16、【解析】令,得,再求出即可得解.【详解】令,得,,所以点的坐标是.故答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)由平面平面,平面平面,且平面,且,根据线面垂直的判定定理可得平面;(2)取的中点,连.由,可得,又平面,所以,又,所以平面,因此就是点到平面的距离,在中,,,所以.试题解析:(1)证明:因为平面平面平面平面,平面,且,所以平面(2)取的中点,连.因为,所以,又平面,所以,又,所以平面,所以就是点到平面的距离,在中,,,所以.所以是点到平面的距离是.【方法点晴】本题主要考查、线面垂直的判定定理及面面垂直的性质定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.18、(1),证明见解析;(2).【解析】(1)由列方程求参数a,令判断的大小关系即可证结论;(2)根据指数复合函数值域的求法,求的值域.【小问1详解】由题设,,则,∴,即,令,则,又单调递增,∴,,,即.∴在上单调递增,得证.小问2详解】由,则,∴.19、(1);(2)5.【解析】(1)利用指数幂的运算法则计算即得解;(2)利用对数的运算法则化简计算即得解.【详解】(1)原式=;(2)原式=.【点睛】本题主要考查指数对数的运算,意在考查学生对这些知识的理解掌握水平.20、(1),(2)【解析】(1)直接代入两点计算得到答案.(2)变换得到,判断在上单调递减,计算,解不等式得到答案.【详解】(1)由题意得解得,.故,(2)不等式,即不等式,则不等式在上恒成立,即不等式上恒成立,即在上恒成立因为在上单调递减,在上单调递减,所以在上单调递减,故.因为在上恒成立,所以,即,解得故m的取值范围为【点睛】本题考查了函数的解析式,恒成立问题,将恒成立问题转化为函数的最值是解题的关键.21、(1).(2)(2,+∞).【解析】(1)使对数式有意义,即得定义域;(2)命题等价于,如其中一个不易求得,如不易求,则转化为恒成立,再由其它方法如分离参数法求解或由二次不等式恒成立问题求解【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年教育心理学考试备考题库及答案一套
- 常州人才科创集团有限公司招收就业见习人员笔试参考题库及答案解析
- 2026年对口单招外贸试题附答案
- 2026重庆工信职业学院招聘12人笔试备考题库及答案解析
- 2026年徐州幼儿师范高等专科学校单招职业适应性考试题库及答案1套
- 2026年小学生考试心理考试题库及参考答案
- 2026年心理普查考试题库参考答案
- 2026广东中山市东凤东海学校教师招聘8人笔试备考题库及答案解析
- 2026浙江台州浙江大学科技园发展有限公司招聘2人笔试参考题库及答案解析
- 2026广东江门市供销集团侨通农产品有限公司招聘业务岗1人笔试参考题库及答案解析
- 医院检查、检验结果互认制度
- 2026年高考化学模拟试卷重点知识题型汇编-原电池与电解池的综合
- 2025青海省生态环保产业有限公司招聘11人笔试历年参考题库附带答案详解
- 2025浙江杭州钱塘新区建设投资集团有限公司招聘5人笔试参考题库及答案解析
- 2025年天津市普通高中学业水平等级性考试思想政治试卷(含答案)
- 2025年昆明市呈贡区城市投资集团有限公司及下属子公司第二批招聘(11人)备考核心题库及答案解析
- 2025年中国磁悬浮柔性输送线行业市场集中度、竞争格局及投融资动态分析报告(智研咨询)
- 学堂在线 雨课堂 学堂云 科研伦理与学术规范 期末考试答案
- 基于单片机的智能家居控制系统设计
- 锅炉大件吊装方案
- 昆明医科大学第二附属医院进修医师申请表
评论
0/150
提交评论