安徽省合肥市肥东中学2026届数学高一上期末检测试题含解析_第1页
安徽省合肥市肥东中学2026届数学高一上期末检测试题含解析_第2页
安徽省合肥市肥东中学2026届数学高一上期末检测试题含解析_第3页
安徽省合肥市肥东中学2026届数学高一上期末检测试题含解析_第4页
安徽省合肥市肥东中学2026届数学高一上期末检测试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市肥东中学2026届数学高一上期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,,则A. B.C. D.2.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.3.为了预防信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种加密密钥密码系统,其加密、解密原理为:发送方由明文→密文(加密),接收方由密文→明文.现在加密密钥为,如“4”通过加密后得到密文“2”,若接受方接到密文“”,则解密后得到的明文是()A. B.C.2 D.4.已知O是所在平面内的一定点,动点P满足,则动点P的轨迹一定通过的()A.内心 B.外心C.重心 D.垂心5.在中,是的().A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.若,,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角7.设,,则()A.且 B.且C.且 D.且8.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,则b的象为A.1,2中的一个 B.1,2C.2 D.无法确定9.集合,集合或,则集合()A. B.C. D.10.已知,则三者的大小关系是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数为奇函数,且对任意互不相等的,,都有成立,且,则的解集为______12.已知是定义在上的偶函数,且当时,,则当时,___________.13.已知,,则____________14.在直角坐标系中,直线的倾斜角________15.函数关于直线对称,设,则________.16.______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知a、b>0且都不为1,函数f(1)若a=2,b=12,解关于x的方程(2)若b=2a,是否存在实数t,使得函数gx=tx+log2f18.如图,正方体的棱长为,连接,,,,,,得到一个三棱锥.求:(1)三棱锥的表面积;(2)三棱锥的体积19.已知定义域为函数是奇函数.(1)求的值;(2)判断的单调性,并证明;(3)若,求实数的取值范围.20.已知函数满足:.(1)证明:;(2)对满足已知的任意值,都有成立,求m的最小值.21.已知定义域为的函数是奇函数.(1)求实数的值;(2)判断并用定义证明该函数在定义域上的单调性;(3)若方程在内有解,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】A项:利用向量的坐标运算以及向量共线的等价条件即可判断.B项:利用向量模的公式即可判断.C项:利用向量的坐标运算求出数量积即可比较大小.D项:利用向量加法的坐标运算即可判断.【详解】A选项:因为,,所以与不共线.B选项:,,显然,不正确.C选项:因为,所以,不正确;D选项:因为,所以,正确;答案为D.【点睛】主要考查向量加、减、数乘、数量积的坐标运算,还有向量模的公式以及向量共线的等价条件的运用.属于基础题.2、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.3、A【解析】根据题意中给出的解密密钥为,利用其加密、解密原理,求出的值,解方程即可求解.【详解】由题可知加密密钥为,由已知可得,当时,,所以,解得,故,显然令,即,解得,即故选:A.4、A【解析】表示的是方向上的单位向量,画图象,根据图象可知点在的角平分线上,故动点必过三角形的内心.【详解】如图,设,,已知均为单位向量,故四边形为菱形,所以平分,由得,又与有公共点,故三点共线,所以点在的角平分线上,故动点的轨迹经过的内心.故选:A.5、B【解析】根据不等式的性质,利用充分条件和必要条件的定义进行判定,即可求解,得到答案.【详解】在中,若,可得,满足,即必要性成立;反之不一定成立,所以在中,是的必要不充分条件.故选B.【点睛】本题主要考查了充分条件和必要条件的判定,其中解答中熟练应用三角函数的性质是解答的关键,属于基础题.6、B【解析】根据,可判断可能在的象限,根据,可判断可能在的象限,综合分析,即可得答案.【详解】由,可得的终边在第一象限或第二象限或与y轴正半轴重合,由,可得的终边在第二象限或第四象限,因为,同时成立,所以是第二象限角.故选:B7、B【解析】容易得出,,即得出,,从而得出,【详解】,.又,即,,,故选B.【点睛】本题考查对数函数单调性的应用,求解时注意总结规律,即对数的底数和真数同时大于1或同时大于0小于1,函数值大于0;若一个大于1,另一个大于0小于1,函数值小于08、A【解析】根据映射中象与原象定义,元素与元素的对应关系即可判断【详解】映射f:A→B,其中A={a,b},B={1,2}已知a的象为1,根据映射的定义,对于集合A中的任意一个元素在集合B中都有唯一的元素和它对应,可得b=1或2,所以选A【点睛】本题考查了集合中象与原象的定义,关于对应关系的理解.注意A集合中的任意元素在集合B中必须有对应,属于基础题9、C【解析】先求得,结合集合并集的运算,即可求解.【详解】由题意,集合或,可得,又由,所以.故选:C.10、A【解析】因为<,所以,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由条件可得函数的单调性,结合,分和利用单调性可解.【详解】因为,时,,所以在上单调递减,又因为为奇函数,且,所以在上单调递减,且.当时,不等式,得;当时,不等式,得.综上,不等式的解集为.故答案:12、【解析】设,则,求出的表达式,再由即可求解.【详解】设,则,所以,因为是定义在上的偶函数,所以,所以当时,故答案为:.13、【解析】,,考点:三角恒等变换14、##30°【解析】由直线方程得斜率,由斜率得倾斜角【详解】试题分析:直线化成,可知,而,故故答案为:15、1【解析】根据正弦及余弦函数的对称性的性质可得的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心,即可求值.【详解】∵函数f(x)的图象关于x对称∵f(x)=3sin(ωx+φ)的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心故有则1故答案为1【点睛】本题考查了正弦及余弦函数的性质属于基础题16、【解析】由指数和对数运算法则直接计算即可.【详解】.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x=-(2)存,t=-1【解析】(1)根据题意可得2x(2)由题意可得gx=tx+log21+2【小问1详解】因为a=2,b=12,所以方程fx=fx+1化简得2x=2-x-1,所以【小问2详解】因为b=2a,故fxgx因为gx是偶函数,故g-x=g而g-x于是tx=-t+1x对任意的实数x18、(1)(2)【解析】(1)直接按照锥体表面积计算即可;(2)利用正方体体积减去三棱锥,,,的体积即可.【小问1详解】∵是正方体,∴,∴三棱锥的表面积为【小问2详解】三棱锥,,,是完全一样的且正方体的体积为,故19、(1)(2)增函数,证明见解析(3)或【解析】(1)由求出,再验证此时为奇函数即可;(2)将的解析式分离常数后可判断出单调性,再利用增函数的定义可证结论成立;(3)利用奇函数性质化为,再利用增函数性质可求出结果.【小问1详解】因为是上的奇函数,所以,即,此时,,所以为奇函数,故.【小问2详解】由(1)知,为上的增函数,证明:任取,且,则,因为,所以,即,又,所以,即,根据增函数的定义可得为上的增函数.【小问3详解】由得,因为为奇函数,所以,因为为增函数,所以,即,所以或.20、(1)证明见解析;(2).【解析】(1)由二次不等式恒成立,可得判别式小于等于0,化简即可得证;(2)由(1)可得,分别讨论或,运用参数分离和函数的单调性,可求得所求的最小值.【详解】(1)证明:.即恒成立.则,化简得;(2)由(1)得,当时,,令,则,令在上单调递增,所以,所以;当时,,所以,此时或0,,从而有,综上可得,m的最小值为.【点睛】方法点睛:本题考查不等式的证明,以及不等式恒成立问题,常运用参变分离的方法,运用函数的单调性,最值的方法得以解决.21、(1)1;(2)见解析;(3)[-1,3).【解析】(1)根据解得,再利用奇偶性的定义验证,即可求得实数的值;(2)先对分离常数后,判断出为递减函数,再利用单调性的定义作差证明即可;(3)先用函数的奇函数性质,再用减函数性质变形,然后分离参数可得,在内有解,令,只要.【详解】(1)依题意得,,故,此时,对任意均有,所以是奇函数,所以.(2)在上减函数,证明如下:任取,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论