版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省宣威市第八中学2026届高二上数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知两个向量,,且,则的值为()A.1 B.2C.4 D.82.已知双曲线,点F为其左焦点,点B,若BF所在直线与双曲线的其中一条渐近线垂直,则该双曲线的离心率为()A. B.C. D.3.在中,已知角A,B,C所对边为a,b,c,,,,则()A. B.C. D.14.在等比数列{an}中,a3,a15是方程x2+6x+2=0的根,则的值为()A. B.C. D.或5.已知双曲线的两个焦点为,,是此双曲线上的一点,且满足,,则该双曲线的方程是()A. B.C. D.6.椭圆的焦点坐标是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)7.某班进行了一次数学测试,全班学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若该班学生这次数学测试成绩的中位数的估计值为,则的值为()A. B.C. D.8.已知等差数列的公差为,则“”是“数列为单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.若抛物线上一点到焦点的距离为5,则点的坐标为()A. B.C. D.10.在棱长为1的正四面体中,点满足,点满足,当和的长度都为最短时,的值是()A. B.C. D.11.下列推理中属于归纳推理且结论正确的是()A.由,求出,,,…,推断:数列的前项和B.由满足对都成立,推断:为奇函数C.由半径为的圆的面积,推断单位圆的面积D.由,,,…,推断:对一切,12.已知等差数列的公差,记该数列的前项和为,则的最大值为()A.66 B.72C.132 D.198二、填空题:本题共4小题,每小题5分,共20分。13.如图,在长方体ABCD—A1B1C1D1中,AB=3,AD=3,AA1=4,P是侧面BCC1B1上的动点,且AP⊥BD1,记点P到平面ABCD的距离为d,则d的最大值为____________.14.设,为实数,已知经过点的椭圆与双曲线有相同的焦点,则___________.15.如图,在等腰直角△ABC中,,点P是边AB上异于A、B的一点,光线从点P出发,经BC、CA反射后又回到原点P.若光线QR经过△ABC的内心,则___________.16.中小学生的视力状况受到社会的关注.某市有关部门从全市6万名高一学生中随机抽取400名学生,对他们的视力状况进行一次调查统计,将所得到的有关数据绘制成频率分布直方图,如图所示,从左至右五个小组的频率之比为,则抽取的这400名高一学生中视力在范围内的学生有______人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,椭圆:离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.设过点的动直线与相交于,两点(1)求椭圆的方程(2)是否存在直线,使得的面积为?若存在,求出的方程;若不存在,请说明理由18.(12分)某中医药研究所研制出一种新型抗过敏药物,服用后需要检验血液抗体是否为阳性,现有n(n∈N*)份血液样本,每个样本取到的可能性均等,有以下两种检验方式:①逐份检验,需要检验n次;②混合检验,将其中k(k∈N*,2≤k≤n)份血液样本分别取样混合在一起检验,若结果为阴性,则这k份的血液全为阴性,因而这k份血液样本只需检验一次就够了,若检验结果为阳性,为了明确这k份血液究竟哪份为阳性,就需要对这k份再逐份检验,此时这k份血液的检验次数总共为k+1次.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是相互独立的,且每份样本是阳性的概率为p(0<p<1).(1)假设有5份血液样本,其中只有两份样本为阳性,若采取逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验出来的概率.(2)现取其中的k(k∈N*,2≤k≤n)份血液样本,采用逐份检验的方式,样本需要检验的次数记为ξ1;采用混合检验的方式,样本需要检验的总次数记为ξ2.(i)若k=4,且,试运用概率与统计的知识,求p的值;(ii)若,证明:.19.(12分)如图,已知双曲线,过向双曲线作两条切线,切点分别为,,且.(1)证明:直线的方程为.(2)设为双曲线的左焦点,证明:.20.(12分)设数列的前项和为,,且,,(1)若(i)求;(ii)求证数列成等差数列(2)若数列为递增数列,且,试求满足条件的所有正整数的值21.(12分)已知椭圆C:()的离心率为,并且经过点,(1)求椭圆C的方程;(2)设点关于坐标原点的对称点为,点为椭圆C上任意一点,直线的斜率分别为,,求证:为定值22.(10分)已知抛物线焦点是,斜率为的直线l经过F且与抛物线相交于A、B两点(1)求该抛物线的标准方程和准线方程;(2)求线段AB的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由,可知,使,利用向量的数乘运算及向量相等即可得解.【详解】∵,∴,使,得,解得:,所以故选:C【点睛】思路点睛:在解决有关平行的问题时,通常需要引入参数,如本题中已知,引入参数,使,转化为方程组求解;本题也可以利用坐标成比例求解,即由,得,求出m,n.2、C【解析】设出双曲线半焦距c,利用斜率坐标公式结合垂直关系列式计算作答.【详解】设双曲线半焦距为c,则,直线BF的斜率为,双曲线的渐近线为:,因直线BF与双曲线的一条渐近线垂直,则有,即,于是得,而,解得,所以双曲线的离心率为.故选:C3、B【解析】利用正弦定理求解.【详解】在中,由正弦定理得,解得,故选:B.4、B【解析】由韦达定理得a3a15=2,由等比数列通项公式性质得:a92=a3a15=a2a16=2,由此求出答案【详解】解:∵在等比数列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故选B【点睛】本题考查等比数列中两项积与另一项的比值的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用5、A【解析】由,可得进一步求出,由此得到,则该双曲线的方程可求【详解】,即,则.即,则该双曲线的方程是:故选:A【点睛】方法点睛:求圆锥曲线的方程,常用待定系数法,先定式(根据已知确定焦点所在的坐标轴,设出曲线的方程),再定式(根据已知建立方程组解方程组得解).6、A【解析】根据椭圆的方程求得的值,进而求得椭圆的焦点坐标,得到答案.【详解】由椭圆,可得,则,所以椭圆的焦点坐标为和.故选:A.7、A【解析】根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得结果.【详解】由题意有,得,又由,得,解得,,有故选:A.8、C【解析】利用等差数列的定义和数列单调性的定义判断可得出结论.【详解】若,则,即,此时,数列为单调递增数列,即“”“数列为单调递增数列”;若等差数列为单调递增数列,则,即“”“数列为单调递增数列”.因此,“”是“数列为单调递增数列”的充分必要条件.故选:C.9、C【解析】设,由抛物线的方程可得准线方程为,由抛物线的性质到焦点的距离等于到准线的距离,求出,解出纵坐标,进而求出【详解】由题意可得,解得,代入抛物线的方程,解得,所以的坐标,故选:C.10、A【解析】根据给定条件确定点M,N的位置,再借助空间向量数量积计算作答.【详解】因,则,即,而,则共面,点M在平面内,又,即,于是得点N在直线上,棱长为1的正四面体中,当长最短时,点M是点A在平面上的射影,即正的中心,因此,,当长最短时,点N是点D在直线AC上的射影,即正边AC的中点,,而,,所以.故选:A11、A【解析】根据归纳推理是由特殊到一般,推导结论可得结果.【详解】对于A,由,求出,,,…,推断:数列的前项和,是由特殊推导出一般性的结论,且,故A正确;B和C属于演绎推理,故不正确;对于D,属于归纳推理,但时,结论不正确,故D不正确.故选:A.12、A【解析】根据等差数列的公差,求得其通项公式求解.【详解】因为等差数列的公差,所以,则,所以,由,得,所以或12时,该数列的前项和取得最大值,最大值为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】以为坐标原点,建立空间直角坐标系,求得的坐标之间的关系,以及坐标的范围,即可求得结果.【详解】以D为原点,为x轴,为y轴,为z轴,建立空间直角坐标系如下所示:设,则,,∵,∴,解得,因为,所以c的最大值为,即点P到平面的距离d的最大值为.故答案为:.14、1【解析】由点P在椭圆上,可得的值,再根据椭圆与双曲线有相同的焦点即可求解.【详解】解:因为点在椭圆上,所以,解得,所以椭圆方程为,又椭圆与双曲线有相同的焦点,所以,解得,故答案为:1.15、【解析】以为坐标原点建立空间直角坐标系,设出点的坐标,求得△的内心坐标,根据△内心以及关于的对称点三点共线,即可求得点的坐标,则问题得解.【详解】根据题意,以为坐标原点,建立平面直角坐标系,设点关于直线的对称点为,关于轴的对称点为,如下所示:则,不妨设,则直线的方程为,设点坐标为,则,且,整理得,解得,即点,又;设△的内切圆圆心为,则由等面积法可得,解得;故其内心坐标为,由及△的内心三点共线,即,整理得,解得(舍)或,故.故答案为:.16、50【解析】利用频率分布直方图的性质求解即可.【详解】第五组的频率为,第一组所占的频率为,则随机抽取400名学生视力在范围内的学生约有人.故答案为:50.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在;或.【解析】(1)设,由,,,求得的值即可得椭圆的方程;(2)设,,直线的方程为与椭圆方程联立可得,,进而可得弦长,求出点到直线的距离,解方程,求得的值即可求解.【小问1详解】设,因为直线的斜率为,,所以,可得,又因为,所以,所以,所以椭圆的方程为【小问2详解】假设存在直线,使得的面积为,当轴时,不合题意,设,,直线的方程为,联立消去得:,由可得或,,,所以,点到直线的距离,所以,整理可得:即,所以或,所以或,所以存在直线:或使得的面积为.18、(1);(2)(i);(ii)证明见解析.【解析】(1)设恰好经过3次检验就能把阳性样本全部检验出来为事件A,由古典概型概率计算公式可得答案;(2)(i)由已知,可能取值分别为1,,求解概率然后求期望推出关于的关系式;(ii)由,计算出,再由,构造函数,利用导数判断函数的最值可得答案..【详解】(1)设恰好经过3次检验就能把阳性样本全部检验出来为事件A,所以前2次检验中有一阳性有一阴性样本第三次为阳性样本,或者前3次均为阴性样本,则.(2)(i),所以,可能取值分别为1,,,,因为得,因为,所以,.(ii)因为,由(i)知,所以,设,,所以在单调递增,所以由于,所以,即,得证.【(4)(5)选做】19、(1)证明见解析(2)证明见解析【解析】(1)设出切线方程,联立后用韦达定理及根的判别式进行表达出A的横坐标与纵坐标,进而表达出直线的方程,化简即为结果;(2)再第一问的基础上,利用向量的夹角公式表达出夹角的余弦值,进而证明出结论.【小问1详解】显然直线的斜率存在,设直线的方程为,联立得,则,化简得.因为方程有两个相等实根,故切点A的横坐标,得,则,故,则,即.【小问2详解】同理可得,又与均过,所以.故,,,又因为,所以,则,,故,故.【点睛】圆锥曲线中证明角度相关的问题,往往需要转化为斜率或向量进行求解.20、(1);详见解析;(2)5.【解析】(1)由题可得,由条件可依次求各项,即得;猜想,用数学归纳法证明即得;(2)设,由题可得,进而可得,结合条件即求.【小问1详解】(i)∵,且,,,∴,,,∴,,,又,,,∴,∴,解得,,解得,,解得,,解得,∴;(ii)由,,,,猜想数列是首项,公差为的等差数列,,用数学归纳法证明:当时,,成立;假设时,等式成立,即,则时,,∴,∴当时,等式也成立,∴,∴数列是首项,公差为的等差数列.【小问2详解】设,由,,即,∴,又,,,∴,,,,,,∴,,,∴,又数列为递增数列,∴,解得,由,∴,解得.【点睛】关键点点睛:第一问的关键是由条件猜想,然后数学归纳法证明,第二问求出,,即得.21、(1)(2)证明见解析【解析】(1)根据题意可列出关于的三个方程,解出即可得到椭圆C的方程;(2)根据对称可得点坐标,再根据斜率公式可得,然后由点为椭圆C上的点得,代入化简即可求出为定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖南九嶷职业技术学院单招职业倾向性考试题库及答案1套
- 2026年安徽现代信息工程职业学院单招职业倾向性考试模拟测试卷附答案
- 2026年延安职业技术学院单招综合素质考试题库及答案1套
- 2026年广州体育职业技术学院单招职业技能测试题库附答案
- 2026天津河东区妇幼保健计划生育服务中心招聘派遣制工作人员笔试参考题库及答案解析
- 2026年舟山市卫生健康系统直属事业单位招聘中医医生类工作人员1人笔试参考题库及答案解析
- 2026浙江嘉兴市世纪交通工程咨询监理有限公司招聘22人笔试参考题库及答案解析
- 东北师范大学2026年春季学期博士后研究人员招收笔试备考题库及答案解析
- 2025广西玉林市玉州区城西街道社区卫生服务中心招聘编外人员4人备考题库附答案
- 2025广东深圳大学丁文华院士团队特别研究助理(博士后)招聘(公共基础知识)测试题附答案
- 鹦鹉热治疗讲课件
- 低碳-零碳产业园清洁能源供暖技术规范DB15-T 3994-2025
- 小学的思政教育
- 学术道德与学术规范严守诚信底线共建优良学风培训课件
- 门诊预约挂号流程
- 光伏防火培训课件
- 2025中学生国防教育
- 电视节目编导与制作(全套课件147P)
- 《海外并购》课件
- 医学预防科普
- 【MOOC】电工电子学-浙江大学 中国大学慕课MOOC答案
评论
0/150
提交评论