版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届云南省曲靖市富源六中高二上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,内角的对边分别为,若,则角为A. B.C. D.2.观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=A. B.C. D.3.设双曲线:(,)的右顶点为,右焦点为,为双曲线在第二象限上的点,直线交双曲线于另一个点(为坐标原点),若直线平分线段,则双曲线的离心率为()A. B.C. D.4.已知双曲线:的左、右焦点分别为,,且,点是的右支上一点,且,,则双曲线的方程为()A. B.C. D.5.已知关于的不等式的解集为,则不等式的解集为()A.或 B.C.或 D.6.若抛物线的焦点与椭圆的左焦点重合,则m的值为()A.4 B.-4C.2 D.-27.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题8.在平面上有及内一点O满足关系式:即称为经典的“奔驰定理”,若的三边为a,b,c,现有则O为的()A.外心 B.内心C.重心 D.垂心9.函数在上的最小值为()A. B.4C. D.10.“,”的否定是A., B.,C., D.,11.已知,若是函数一个零点,则的值为()A.0 B.C.1 D.12.在平面区域内随机投入一点P,则点P的坐标满足不等式的概率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是函数的导函数,,对任意实数都有,则不等式的解集为___________.14.已知直线与直线平行,则实数______15.已知抛物线的焦点为,点在上,且,则______16.数列满足,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:(1)若抛物线C上一点P到F的距离是4,求P的坐标;(2)若不过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点18.(12分)已知函数在处取得极值7(1)求的值;(2)求函数在区间上的最大值19.(12分)如图,四棱锥中,底面为正方形,底面,,点,,分别为,,的中点,平面棱(1)试确定的值,并证明你的结论;(2)求平面与平面夹角的余弦值20.(12分)已知椭圆.离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点直线的斜率之积等于,试探求的面积是否为定值,并说明理由21.(12分)已知的展开式中,只有第6项的二项式系数最大(1)求n的值;(2)求展开式中含的项22.(10分)已知数列是公差为2的等差数列,它的前n项和为Sn,且成等比数列.(1)求的通项公式;(2)求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】因为,那么结合,所以cosA==,所以A=,故答案为A考点:正弦定理与余弦定理点评:本题主要考查正弦定理与余弦定理的基本应用,属于中等题.2、D【解析】由归纳推理可知偶函数的导数是奇函数,因为是偶函数,则是奇函数,所以,应选答案D3、A【解析】由给定条件写出点A,F坐标,设出点B的坐标,求出线段FC的中点坐标,由三点共线列式计算即得.【详解】令双曲线的半焦距为c,点,设,由双曲线对称性得,线段FC的中点,因直线平分线段,即点D,A,B共线,于是有,即,即,离心率.故选:A4、B【解析】画出图形,利用已知条件转化求解,关系,利用,解得,即可得到双曲线的方程【详解】由题意双曲线的图形如图,连接与轴交于点,设,,因为,所以,因为,所以,则,因为点是的右支上一点,所以,所以,则,因为,所以,,由勾股定理可得:,即,解得,则,所以双曲线的方程为:故选:B5、A【解析】由一元二次不等式的解集可得且,确定a、b、c间的数量关系,再求的解集.【详解】由题意知:且,得,从而可化为,等价于,解得或.故选:A.6、B【解析】根据抛物线和椭圆焦点与其各自标准方程的关系即可求解.【详解】由题可知抛物线焦点为,椭圆左焦点为,∴.故选:B.7、A【解析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A8、B【解析】利用三角形面积公式,推出点O到三边距离相等。【详解】记点O到AB、BC、CA的距离分别为,,,,因为,则,即,又因为,所以,所以点P是△ABC的内心.故选:B9、D【解析】求出导数,由导数确定函数在上的单调性与极值,可得最小值【详解】,所以时,,递减,时,,递增,所以是在上的唯一极值点,极小值也是最小值.故选:D10、D【解析】通过命题的否定的形式进行判断【详解】因为全称命题的否定是特称命题,故“,”的否定是“,”.故选D.【点睛】本题考查全称命题的否定,属基础题.11、A【解析】首先根据题意求出,然后设函数,利用以及的单调性,并结合对数运算即可求解.【详解】由题意可知,,所以,不妨设,(),故,从而,易知在上单调递增,故,即,从而.故选:A.12、A【解析】根据题意作出图形,进而根据几何概型求概率的方法求得答案.【详解】根据题意作出示意图,如图所示:于,所求概率.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】令则,∴在R上是减函数又等价于∴故不等式的解集是答案:点睛:本题考查用构造函数的方法解不等式,即通过构造合适的函数,利用函数的单调性求得不等式的解集,解题时要注意常见的函数类型,如在本题中由于涉及到,故可从以下两种情况入手解决:(1)对于,可构造函数;(2)对于,可构造函数14、【解析】分类讨论,两种情况,结合直线平行的知识得出实数.【详解】当时,直线与直线垂直;当时,,则且,解得.故答案为:15、【解析】由抛物线的焦半径公式可求得的值.【详解】抛物线的准线方程为,由抛物线的焦半径公式可得,解得.故答案为:.16、【解析】根据题中所给的递推式得到数列具有周期性,进而得到结果.【详解】根据题中递推式知,可知数列具有周期性,周期为3,因为故故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】(1)由抛物线的定义,可得点的坐标;(2)可设直线的方程为,,,,与抛物线联立,消,利用韦达定理求得,,再根据,可得,从而可求得参数的关系,即可得出结论.【小问1详解】解:设,,由抛物线的定义可知,即,解得,将代入方程,得,即的坐标为;【小问2详解】证明:由题意知直线不能与轴平行,可设直线的方程为,与抛物线联立得,消去得,设,,,则,,由,可得,即,即,即,又,解得,所以直线方程为,当时,,所以直线过定点18、(1);(2).【解析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为,所以,又函数在处取得极值7,,解得;,所以,由得或;由得;满足题意;(2)又,由(1)得在上单调递增,在上单调递减,因此【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值.19、(1),证明见解析(2)【解析】(1),利用线面平行的判定和性质可得答案;(2)以为原点,所在直线分别为的正方向建立空间直角坐标系,求出平面的法向量和平面的法向量由向量夹角公式可得答案.【小问1详解】.证明如下:在△中,因为点分别为的中点,所以//.又平面,平面,所以//平面.因为平面,平面平面,所以//所以//.在△中,因为点为的中点,所以点为的中点,即.【小问2详解】因为底面为正方形,所以.因为底面,所以,.如图,建立空间直角坐标系,则,,,因为分别为的中点,所以.所以,.设平面的法向量,则即令,于.又因为平面的法向量为,所以所以平面与平面夹角的余弦值为.20、(1);(2)是定值,理由见解析.【解析】(1)由题意有,点与椭圆的左、右顶点可以构成等腰直角三角形有,即可写出椭圆方程;(2)直线与椭圆交于两点,联立方程结合韦达定理即有,已知应用点线距离公式、三角形面积公式即可说明的面积是否为定值;【详解】(1)椭圆离心率为,即,∵点与椭圆的左、右顶点可以构成等腰直角三角形,∴,综上有:,,故椭圆方程为,(2)由直线与椭圆交于两点,联立方程:,整理得,设,则,,,,原点到的距离,为定值;【点睛】本题考查了由离心率求椭圆方程,根据直线与椭圆的相交关系证明交点与原点构成的三角形面积是否为定值的问题.21、(1)10;(2);【解析】(1)利用二项式系数的性质即可求出的值;(2)求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026广东广州花都区第一中学校医招聘1人笔试备考试题及答案解析
- 2026黄河实验室(河南)招聘5人笔试模拟试题及答案解析
- 2026江西吉安井冈农业生物科技有限公司招聘见习人员1人笔试备考题库及答案解析
- 中国太平洋保险股份有限公司铜陵支公司招聘2人笔试备考题库及答案解析
- 2026青岛市崂山区某国有企业招聘4人笔试参考题库及答案解析
- 2026浙江温州大学国际教育学院招聘1人笔试备考试题及答案解析
- 2026云南曲靖市消防救援支队集中稽核监管外聘财务人员招聘3人笔试备考试题及答案解析
- “梦工场”招商银行南通分行2026寒假实习生招聘笔试备考试题及答案解析
- 2026广西来宾市忻城县经济贸易局招聘编外人员4人笔试参考题库及答案解析
- 2025年下半年黑龙江日报报业集团招聘部分岗位缩减招聘人数笔试参考题库及答案解析
- 钯金的选矿工艺
- 人工智能在金融策略中的应用
- JCT640-2010 顶进施工法用钢筋混凝土排水管
- 赤壁赋的议论文800字(实用8篇)
- 高压燃气管道施工方案
- 输变电工程技术标书【实用文档】doc
- 南部山区仲宫街道乡村建设规划一张表
- 加工中心点检表
- GB/T 2652-1989焊缝及熔敷金属拉伸试验方法
- GB/T 25630-2010透平压缩机性能试验规程
- GB/T 19668.1-2014信息技术服务监理第1部分:总则
评论
0/150
提交评论