福建省新2026届高一数学第一学期期末联考模拟试题含解析_第1页
福建省新2026届高一数学第一学期期末联考模拟试题含解析_第2页
福建省新2026届高一数学第一学期期末联考模拟试题含解析_第3页
福建省新2026届高一数学第一学期期末联考模拟试题含解析_第4页
福建省新2026届高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省新2026届高一数学第一学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数的图像过点,则下列关于说法正确的是()A.奇函数 B.偶函数C.定义域为 D.在单调递减2.若,则()A. B.C. D.3.已知函数则的值为()A. B.C.0 D.14.在平面直角坐标系中,以为圆心的圆与轴和轴分别相切于两点,点分别在线段上,若,与圆相切,则的最小值为A. B.C. D.5.已知函数的定义域为,则函数的定义域为()A. B.C. D.6.如果关于x的不等式x2<ax+b的解集是{x|-1<x<3},那么ba等于()A.-9 B.9C.- D.-87.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f的x的取值范围是()A. B.C. D.8.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.29.对于函数,,“”是“的图象既关于原点对称又关于轴对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.过点且与原点距离最大的直线方程是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的部分图象如图所示.若,且,则_____________12.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.13.函数的定义域是________14.若xlog23=1,则9x+3﹣x=_____15.直线与函数的图象相交,若自左至右的三个相邻交点依次为、、,且满足,则实数________16.函数f(x)为奇函数,且x>0时,f(x)=+1,则当x<0时,f(x)=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,.(1)解方程;(2)判断在上的单调性,并用定义加以证明;(3)若不等式对恒成立,求的取值范围.18.(附加题,本小题满分10分,该题计入总分)已知函数,若在区间内有且仅有一个,使得成立,则称函数具有性质(1)若,判断是否具有性质,说明理由;(2)若函数具有性质,试求实数的取值范围19.定义在上奇函数,已知当时,求实数a的值;求在上的解析式;若存在时,使不等式成立,求实数m的取值范围20.已知集合.(1)当时,求;(2)若,求实数的取值范围.21.设两个向量,,满足,.(1)若,求、的夹角;(2)若、夹角为,向量与夹角为钝角,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设出幂函数的解析式,将所过点坐标代入,即可求出该函数.再根据幂函数的性质的结论,选出正确选项.【详解】设幂函数为,因为函数过点,所以,则,所以,该函数定义域为,则其既不是奇函数也不是偶函数,且由可知,该幂函数在单调递减.故选:D.2、A【解析】令,则,所以,由诱导公式可得结果.【详解】令,则,且,所以.故选:A.3、D【解析】根据分段函数解析式及指数对数的运算法则计算可得;【详解】解:因为,所以,所以,故选:D4、D【解析】因为为圆心的圆与轴和轴分别相切于两点,点分别在线段上,若,与圆相切,设切点为,所以,设,则,,故选D.考点:1、圆的几何性质;2、数形结合思想及三角函数求最值【方法点睛】本题主要考查圆的几何性质、数形结合思想及三角函数求最值,属于难题.求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②三角函数法:将问题转化为三角函数,利用三角函数的有界性求最值;③不等式法:借助于基本不等式求函数的值域,用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图像法:画出函数图像,根据图像的最高和最低点求最值,本题主要应用方法②求的最小值的5、B【解析】根据函数的定义域求出的范围,结合分母不为0求出函数的定义域即可【详解】由题意得:,解得:,由,解得:,故函数的定义域是,故选:B6、B【解析】根据一元二次不等式的解集,利用根与系致的关系求出的值

,再计的值.【详解】由不等式的解集是,所以是方程的两个实数根.则,所以所以故选:B7、A【解析】根据函数的奇偶性和单调性,将不等式进行等价转化,求解即可.【详解】∵f(x)为偶函数,∴f(x)=f(|x|).则f(|2x-1|)<f.又∵f(x)在[0,+∞)上单调递增,∴|2x-1|<,解得<x<.故选:.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.8、A【解析】首先根据解析式求值,结合奇函数有即可求得【详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值9、C【解析】由函数奇偶性的定义求出的解析式,可得出结论.【详解】若函数的定义域为,的图象既关于原点对称又关于轴对称,则,可得,因此,“”是“的图象既关于原点对称又关于轴对称”的充要条件故选:C.10、A【解析】首先根据题意得到过点且与垂直的直线为所求直线,再求直线方程即可.【详解】由题知:过点且与原点距离最大的直线为过点且与垂直的直线.因为,故所求直线为,即.故选:A【点睛】本题主要考查直线方程的求解,数形结合为解题的关键,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.12、【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想13、##【解析】利用对数的真数大于零可求得原函数的定义域.【详解】对于函数,,解得,故函数的定义域为.故答案为:.14、【解析】由已知条件可得x=log32,即3x=2,再结合分数指数幂的运算即可得解.【详解】解:∵,∴x=log32,则3x=2,∴9x=4,,∴,故答案为:【点睛】本题考查了指数与对数形式的互化,重点考查了分数指数幂的运算,属基础题.15、或【解析】设点、、的横坐标依次为、、,由题意可知,根据题意可得出关于、的方程组,分、两种情况讨论,求出的值,即可求得的值.【详解】设点、、的横坐标依次为、、,则,当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,;当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,.综上所述,或.故答案为:或.16、【解析】当x<0时,-x>0,∴f(-x)=+1,又f(-x)=-f(x),∴f(x)=,故填.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)在上单调递减,在上单调递增,证明见解析(3)【解析】(1)由已知得,解方程即可;(2)任取,且,则,分和讨论可得答案;(3)将不等式对恒成立问题转化为,的最小值问题,求出的最小值即可得的取值范围.【详解】(1)由已知.所以,得或,所以或;(2)任取,且,则因为,且,所以,.当时,恒成立,,即;当时,恒成立,,即.故在上单调递减,在上单调递增;(3),,令,.由(2)知,在上单调递减,在上单调递增,所以,所以,即,故的取值范围是.【点睛】本题考查函数单调性的判断和证明,考查函数不等式恒成立问题,转化为最值问题即可,是中档题.18、(Ⅰ)具有性质;(Ⅱ)或或【解析】(Ⅰ)具有性质.若存在,使得,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根.设,即在上有且只有一个零点.讨论的取值范围,结合零点存在定理,即可得到的范围试题解析:(Ⅰ)具有性质依题意,若存在,使,则时有,即,,.由于,所以.又因为区间内有且仅有一个,使成立,所以具有性质5分(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根设,即在上有且只有一个零点解法一:(1)当时,即时,可得在上为增函数,只需解得交集得(2)当时,即时,若使函数在上有且只有一个零点,需考虑以下3种情况:(ⅰ)时,在上有且只有一个零点,符合题意(ⅱ)当即时,需解得交集得(ⅲ)当时,即时,需解得交集得(3)当时,即时,可得在上为减函数只需解得交集得综上所述,若函数具有性质,实数的取值范围是或或14分解法二:依题意,(1)由得,,解得或同时需要考虑以下三种情况:(2)由解得(3)由解得不等式组无解(4)由解得解得综上所述,若函数具有性质,实数的取值范围是或或14分考点:1.零点存在定理;2.分类讨论的思想19、(1);(2);(3).【解析】根据题意,由函数奇偶性的性质可得,解可得的值,验证即可得答案;当时,,求出的解析式,结合函数的奇偶性分析可得答案;根据题意,若存在,使得成立,即在有解,变形可得在有解设,分析的单调性可得的最大值,从而可得结果【详解】根据题意,是定义在上的奇函数,则,得经检验满足题意;故;根据题意,当时,,当时,,又是奇函数,则综上,当时,;根据题意,若存在,使得成立,即在有解,即在有解又由,则在有解设,分析可得上单调递减,又由时,,故即实数m的取值范围是【点睛】本题考查函数的奇偶性的应用,以及指数函数单调性的应用,属于综合题20、(1);(2).【解析】(1)m=﹣2时求出集合B,然后进行交集、并集的运算即可;(2)由B⊆A便可得到,解该不等式组即可得到实数m的取值范围试题解析:(1);(2)解:当时,,由中不等式变形得,解得,即.(1).(2),解得,的取值范围为.21、(1);(2)且.【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论