山东青岛胶州市2026届高一数学第一学期期末统考模拟试题含解析_第1页
山东青岛胶州市2026届高一数学第一学期期末统考模拟试题含解析_第2页
山东青岛胶州市2026届高一数学第一学期期末统考模拟试题含解析_第3页
山东青岛胶州市2026届高一数学第一学期期末统考模拟试题含解析_第4页
山东青岛胶州市2026届高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东青岛胶州市2026届高一数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的大致图像如图所示,则它的解析式是A. B.C. D.2.定义在上的函数满足,且,,则不等式的解集为()A. B.C. D.3.设,,,则A. B.C. D.4.设,且,下列选项中一定正确的是()A. B.C. D.5.如图,在矩形中,是两条对角线的交点,则A. B.C. D.6.设全集,,,则如图阴影部分表示的集合为()A. B.C. D.7.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测.若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为()3457078636046896082323457889078442125331253007328632211834297864540732524206443812234356773578905642A. B.C. D.8.已知是角的终边上的点,则()A. B.C. D.9.下列关系式中,正确的是A. B.C. D.10.若函数,则的单调递增区间为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是第四象限角,,则______12.已知且,若,则的值为___________.13.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.14.若函数满足:对任意实数,有且,当时,,则时,________15.已知,则_______.16.函数的最大值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)若函数,求函数零点.18.如图1所示,在中,分别为的中点,点为线段上的一点,将沿折起到的位置,使如图2所示.(1)求证://平面;(2)求证:;(3)线段上是否存在点,使平面?请说明理由.19.在①“xA是xB的充分不必要条件;②;③这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题:已知集合,.(1)当a=2时,求;(2)若选,求实数a的取值范围.20.如图,四棱锥的底面是菱形,,平面,是的中点.(1)求证:平面平面;(2)棱上是否存在一点,使得平面?若存在,确定的位置并加以证明;若不存在,请说明理由.21.已知函数.(1)化简;(2)若,求下列表达式的值:①;②.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由图易知:函数图象关于y轴对称,函数为偶函数,排除A,B;的图象为开口向上的抛物线,显然不适合,故选D点睛:识图常用方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题2、B【解析】对变形得到,构造新函数,得到在上单调递减,再对变形为,结合,得到,根据的单调性,得到解集.【详解】,不妨设,故,即,令,则,故在上单调递减,,不等式两边同除以得:,因为,所以,即,根据在上单调递减,故,综上:故选:B3、C【解析】利用有理指数幂与对数的运算性质分别比较,,与1和2的大小得答案【详解】∵,且,,,∴故选C【点睛】本题考查对数值的大小比较,考查有理指数幂与对数的运算性质,寻找中间量是解题的关键,属于基础题4、D【解析】举出反例即可判断AC,根据不等式的性质即可判断B,利用作差法即可判断D.【详解】解:对于A,当时,不成立,故A错误;对于B,若,则,故B错误;对于C,当时,,故C错误;对于D,,因为,所以,,所以,即,故D正确.故选:D.5、B【解析】利用向量加减法的三角形法则即可求解.【详解】原式=,答案为B.【点睛】主要考查向量的加减法运算,属于基础题.6、D【解析】解出集合、,然后利用图中阴影部分所表示的集合的含义得出结果.【详解】,.图中阴影部分所表示的集合为且.故选:D.【点睛】本题考查韦恩图表示的集合的求解,同时也考查了一元二次不等式的解法,解题的关键就是弄清楚阴影部分所表示的集合的含义,考查运算求解能力,属于基础题.7、C【解析】根据随机数表依次进行选取即可【详解】解:根据随机数的定义,1行的第5列数字开始由左向右依次选取两个数字,大于30的数字舍去,重复的舍去,取到数字依次为07,04,08,23,12,则抽取的第5个零件编号为12.故选:【点睛】本题考查简单随机抽样的应用,同时考查对随机数表法的理解和辨析8、A【解析】根据三角函数的定义求解即可.【详解】因为为角终边上的一点,所以,,,所以故选:A9、C【解析】不含任何元素的集合称为空集,即为,而代表由单元素0组成的集合,所以,而与的关系应该是.故选C.10、A【解析】令,则,根据解析式,先求出函数定义域,结合二次函数以及对数函数的性质,即可得出结果.【详解】令,则,由真数得,∵抛物线的开口向下,对称轴,∴在区间上单调递增,在区间上单调递减,又∵在定义域上单调递减,由复合函数的单调性可得:的单调递增区间为.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用同角三角函数的基本关系求出的值,在利用诱导公式可求得结果.【详解】因为是第四象限角,,则,所以,.故答案为:.12、##【解析】根据将对数式化为指数式,再根据指数幂的运算性质即可得解.【详解】解:因为,所以,所以.故答案为:.13、【解析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).14、【解析】由,可知.所以函数是周期为4的周期函数.,时,..对任意实数,有,可知函数关于点(1,0)中心对称,所以,又.所以.综上可知,时,.故答案为.点睛:抽象函数的周期性:(1)若,则函数周期为T;(2)若,则函数周期为(3)若,则函数的周期为;(4)若,则函数的周期为.15、【解析】将条件平方可得答案.【详解】因为,所以,所以故答案为:16、【解析】根据二次函数的性质,结合给定的区间求最大值即可.【详解】由,则开口向上且对称轴为,又,∴,,故函数最大值为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)为奇函数(3)【解析】(1)要使函数有意义,必须满足,从而得到定义域;(2)利用奇偶性定义判断奇偶性;(3)函数的零点即方程的根.即的根,又为奇函数,所以.易证:在定义域上为增函数,∴由得,从而解得函数的零点.试题解析:(1)要使函数有意义,必须满足,∴,因此,的定义域为.(2)函数为奇函数.∵的定义域为,对内的任意有:,所以,为奇函数.(3)函数的零点即方程的根.即的根,又为奇函数,所以.任取,且,∵,∴,∴∵且,∴,∴,∴,∴,即,∴在定义域上为增函数,∴由得解得或,验证当时,不符合题意,当时,符合题意,所以函数的零点为.点睛:证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.18、(1)见解析(2)见解析(3)见解析【解析】(1)∵DE∥BC,由线面平行的判定定理得出(2)可以先证,得出,∵∴∴(3)Q为的中点,由上问,易知,取中点P,连接DP和QP,不难证出,∴∴,又∵∴19、(1);(2)答案见解析.【解析】(1)当时,求出集合再根据并集定义求;(2)选择有AB,列不等式求解即可;选择有同样列出不等式求解;选择因为,则或,求解即可【详解】(1)当时,集合,,所以;(2)选择因为“”是“”的充分不必要条件,所以AB,因为,所以又因为,所以等号不同时成立,解得,因此实数a的取值范围是.选择因为,所以.因为,所以.又因为,所以,解得,因此实数a的取值范围是.选择因为,而,且不为空集,,所以或,解得或,所以实数a取值范围是或20、(1)见解析(2)点为的中点【解析】(1)证面面垂直,可先由线面垂直入手即,进而得到面面垂直;(2)通过构造平行四边形,得到线面平行.解析:(1)连接,因为底面是菱形,,所以为正三角形.因为是的中点,所以,因为面,,∴,因为,,,所以.又,所以面⊥面.(2)当点为的中点时,∥面.事实上,取的中点,的中点,连结,,∵为三角形的中位线,∴∥且,又在菱形中,为中点,∴∥且,∴∥且,所以四边形平行四边形.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论